
 Events – deep dive

Piotr Kliczewski
Red Hat
23 July 2015

Agenda

● Motivation

● What's new

● Event Flow

● Engine usage

● Vdsm usage

● Where it is used today

● Future plans

Motivation – issues solved

● One side responsible for initiating communication

● Periodic information exchange based on quartz

● High resource utilization

● Increased network traffic

What's new

● Expose communication asynchronicity in the engine

● Json-rpc 2.0 notification format

● Bi-directional data exchange

● Broker “ready” - topology still open – mini broker in use
in vdsm

● Implementation of org.reactivestreams in the engine

● Partial contract by using subscription ID

Asynchronous communication

New way of running a command:

VDSAsyncReturnValue asyncRetVal =
ResourceManager.getInstance().runAsyncVdsCommand(VDSCommandType.GetImageInfo,
 new GetImageInfoVDSCommandParameters(storagePoolId,
 storageDomainId,
 diskImage.getId(),
 diskImage.getImageId()));
 if (asyncRetVal != null && asyncRetVal.isRequestCompleted()) {
 Object retVal = asyncRetVal.getReturnValue();
 // process retVal here
 }

Complete example: https://gerrit.ovirt.org/#/c/39374

Event format

● Based on Notification from jsonrpc 2.0 specification

SEND
destination: <queue/topic>
content-type:text/json
content-length: <length>
{
 "jsonrpc": "2.0",
 "method": "<receiver>|<component>|<operation_id>|<unique_id>",
 params": {
 <contents>
 }
}
^@

VDSM as a broker

● Legacy mode for 3.5 (based on old queue naming
convention)

● Standard mode

● Stomp Broker

ReactiveStreams Implementation

Subscription ID

It is used as contract between vdsm and the engine
code to uniquely identify events.

● Receiver - contains a hostname, and it is provided by
the client side when an event is received

● Component - contains information about which
component generated an event

● Operation id - contains information about the
operation, currently mapped to API.py verbs

● Unique id - contains information about the object on
which an operation is performed

Event flow

How to receive an event

We need to register our implementation of
EventSubscriber
 this.resourceManager.subscribe(new EventSubscriber(manager.getVdsHostname() + "|*|VM_status|*") {
 @Override
 public void onSubscribe(Subscription sub) {
 subscription = sub;
 subscription.request(1);
 }
 @Override
 public void onNext(Map<String, Object> map) {
 try {
 List<Pair<VM, VmInternalData>> changedVms = new ArrayList<>();
 List<Pair<VM, VmInternalData>> devicesChangedVms = new ArrayList<>();
 convertEvent(changedVms, devicesChangedVms, map);
 if (!changedVms.isEmpty() || !devicesChangedVms.isEmpty()) {
 getVmsMonitoring(changedVms, devicesChangedVms).perform();
 }
 } finally {
 subscription.request(1);
 }
 }

@Override
public void onError(Throwable t) {
}
@Override
public void onComplete() {

 }
});

How to send an event

We need an instance of clientIF and call notify.

 stats = {}

 # collect stats

 self._notify('VM_status', stats)

 def _notify(self, operation, params):

 sub_id = '|virt|%s|%s' % (operation, self.id)

 self.cif.notify(sub_id, **{self.id: params})

Failure cases

● When no matches on the engine an event is dropped

● If no-one is subscribed to jms.queue.events queue no

events are sent

● There is no guarantee that an event is delivered so it is
important to poll for information after a timeout

Usage in 3.6

● VM monitoring

● DHCP IP assignment (investigated)

VM monitoring (data)

● notify_time – Time when an event as triggered (added
by infrastructure)

● status – new vm status

● hash – device hash. Used to understand whether any
device has changed

● exit_code, exit_message, exit_reason – additional
information for 'Down' status

VM monitoring (gains)

● Reduce polling

Number of calls for 200 hypervisors
● 3.5 # requests per minute

● getAllVMStats (poll) – 800
● getVMList (poll) - 3200
● getStats (poll) – depends on # of vm status changes

● 3.6 # requests per minute
● getAllVMStats (poll) – 800
● Vm status event (incoming) – depends on # of vm status

changes

● Improve user experience

Future plans

● Back pressure

● Aggregation/throttling

● Schema and versioning

● Widespread use (storage, virt and network)

● Broker

Summary

● Functionality provided as part of event changes

● New architecture of communication layer

● How to send and receive events

● Current usage and future plans

THANK YOU !

pkliczew@redhat.com

@pkliczewski

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

