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Topics covered in this session

(1) What is GwtCommon

(2) How we use it in Frontend projects

(3) Guidelines for expanding GwtCommon

(4) Ideas for UI reuse
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How it all started...

● Let there be WebAdmin

● We embraced GWT MVP-style development using 
GWTP framework

● We learned how to integrate and use UiCommon 
models in our infrastructure
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GwtCommon introduction

● We established new concepts that proved to be 
useful in WebAdmin

● Model providers for managing UiCommon models
within Guice/GIN context

● Customized Editor Driver support for UiCommon 
models, including Editor widgets for those models

● Standard infrastructure related events
UserLoginChange event, UiCommonInit event, etc.

● Auto-login using dynamic host page
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GwtCommon introduction

● Besides those concepts, we have also written
● Integration with UiCommon, so that we can use its 

models correctly via GIN-managed model providers
● Custom widgets like model-bound action table, which 

has its buttons bound to model commands
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But...

● WebAdmin is not the only Frontend application
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Goals behind GwtCommon

● To create reusable GWT module that contains
● Common infrastructure classes, reflecting our main 

concepts
● UiCommon integration classes
● Common features and behavior, encapsulated within 

reusable system components (e.g. model-bound dialog 
presenters and views)

● Abstract classes for common widgets (e.g. action table), 
given that each project will customize their concrete UI
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Impacts of using GwtCommon in WebAdmin

● WebAdmin.gwt.xml is shorter since we inherit 
GwtCommon.gwt.xml

● GIN, GWTP MVP, UiCommonWeb, custom generators

● WebAdmin infrastructure classes usually extend base 
ones defined in GwtCommon

● Reduced boilerplate code
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Impacts of using GwtCommon in WebAdmin

public class SystemModule extends BaseSystemModule {

    @Override
    protected void configure() {
        bindInfrastructure();
        bindConfiguration();
    }

    void bindInfrastructure() {
        bindCommonInfrastructure();
        bind(ApplicationInit.class).asEagerSingleton();
        bind(InternalConfiguration.class).asEagerSingleton();
    }

    void bindConfiguration() {
        bindPlaceConfiguration(ApplicationPlaces.loginPlace,
                ApplicationPlaces.virtualMachineMainTabPlace);
        bindResourceConfiguration(ApplicationConstants.class,
                ApplicationMessages.class,
                ApplicationResources.class,
                ApplicationTemplates.class);
    }

}
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Moving more stuff to GwtCommon

● All the common infrastructure and UiCommon 
integration is already there

● For common features/behavior/widgets
● Only the reasonable intersection between WebAdmin 

and UserPortal
● We can move more of these from WebAdmin, in case 

they are needed
● However, as with every “common” library, we should 

extract only things which we will actually use >1 times
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Moving more stuff to GwtCommon

● Having a common module means more responsibility
● Multiple applications use GwtCommon
● GwtCommon modifications should not introduce 

regressions in existing Frontend projects (successful 
build is not enough)

● GwtCommon should not enforce changes in other 
projects, just because some feature is required by one 
particular project
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Some ideas about code reuse

● “Never write the same code twice”

● What if two blocks of code are similar, but still slightly 
different?

● Create some parameters!
● What if you need something more in some case?

● Add conditional logic to decide what to do!
● What if you can't fix one caller without breaking 

another caller?
● Add another layer of abstraction!
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Some ideas about code reuse

● The resulting code is often hard to understand, 
maintain and nearly impossible to extend

● It does not make sense to try to reuse everything just 
because the code looks similar

● Good reusable code is simple and easy to understand
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Code reuse pitfall example

WebAdmin

GWTP Presenter

Main tab Presenter

Main tab with details Presenter

GWTP Presenter

Side tab Presenter

UserPortal
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GwtCommon UI reuse

● Originally, there were no resources in GwtCommon, 
e.g. images, *.css files, *.ui.xml files

● GwtCommon provides UI (widget) abstractions that 
should be implemented in concrete environments, e.g. 
AbstractActionTable vs. SimpleActionTable

● Turns out that some parts of UI are (nearly) identical 
for multiple applications

● Main and sub tab UI (forms and tables)
● Dialog UI
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GwtCommon UI reuse

● Common UI should be moved into GwtCommon
● GWTP Views are architectural components, specific to 

each GWTP application
● UI reuse should focus on UI only (widget level)
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GwtCommon UI reuse

WebAdmin VM General sub tab UI

UserPortal VM General sub tab UI
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GwtCommon UI reuse

● Driven by UserPortal common UI, we will
● Extract UI code into widgets that are Editors of 

corresponding UiCommon models
● Reuse those model-bound widgets

● However, we should extract only stuff that will be used 
more than once

● Trying to extract every piece of UI into GwtCommon 
has no real value except wasted time and energy

● Let's try to be lean and follow YAGNI principle
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That's all folks


