
INTERNAL ONLY | VOJTECH SZÖCS1

GwtCommon ModuleGwtCommon Module

Vojtech Szöcs

14.2.2012



INTERNAL ONLY | VOJTECH SZÖCS2

Topics covered in this session

(1) What is GwtCommon

(2) How we use it in Frontend projects

(3) Guidelines for expanding GwtCommon

(4) Ideas for UI reuse



INTERNAL ONLY | VOJTECH SZÖCS3

How it all started...

● Let there be WebAdmin

● We embraced GWT MVP-style development using 
GWTP framework

● We learned how to integrate and use UiCommon 
models in our infrastructure



INTERNAL ONLY | VOJTECH SZÖCS4

GwtCommon introduction

● We established new concepts that proved to be 
useful in WebAdmin

● Model providers for managing UiCommon models
within Guice/GIN context

● Customized Editor Driver support for UiCommon 
models, including Editor widgets for those models

● Standard infrastructure related events
UserLoginChange event, UiCommonInit event, etc.

● Auto-login using dynamic host page



INTERNAL ONLY | VOJTECH SZÖCS5

GwtCommon introduction

● Besides those concepts, we have also written
● Integration with UiCommon, so that we can use its 

models correctly via GIN-managed model providers
● Custom widgets like model-bound action table, which 

has its buttons bound to model commands



INTERNAL ONLY | VOJTECH SZÖCS6

But...

● WebAdmin is not the only Frontend application



INTERNAL ONLY | VOJTECH SZÖCS7

Goals behind GwtCommon

● To create reusable GWT module that contains
● Common infrastructure classes, reflecting our main 

concepts
● UiCommon integration classes
● Common features and behavior, encapsulated within 

reusable system components (e.g. model-bound dialog 
presenters and views)

● Abstract classes for common widgets (e.g. action table), 
given that each project will customize their concrete UI



INTERNAL ONLY | VOJTECH SZÖCS8

Impacts of using GwtCommon in WebAdmin

● WebAdmin.gwt.xml is shorter since we inherit 
GwtCommon.gwt.xml

● GIN, GWTP MVP, UiCommonWeb, custom generators

● WebAdmin infrastructure classes usually extend base 
ones defined in GwtCommon

● Reduced boilerplate code



INTERNAL ONLY | VOJTECH SZÖCS9

Impacts of using GwtCommon in WebAdmin

public class SystemModule extends BaseSystemModule {

    @Override
    protected void configure() {
        bindInfrastructure();
        bindConfiguration();
    }

    void bindInfrastructure() {
        bindCommonInfrastructure();
        bind(ApplicationInit.class).asEagerSingleton();
        bind(InternalConfiguration.class).asEagerSingleton();
    }

    void bindConfiguration() {
        bindPlaceConfiguration(ApplicationPlaces.loginPlace,
                ApplicationPlaces.virtualMachineMainTabPlace);
        bindResourceConfiguration(ApplicationConstants.class,
                ApplicationMessages.class,
                ApplicationResources.class,
                ApplicationTemplates.class);
    }

}



INTERNAL ONLY | VOJTECH SZÖCS10

Moving more stuff to GwtCommon

● All the common infrastructure and UiCommon 
integration is already there

● For common features/behavior/widgets
● Only the reasonable intersection between WebAdmin 

and UserPortal
● We can move more of these from WebAdmin, in case 

they are needed
● However, as with every “common” library, we should 

extract only things which we will actually use >1 times



INTERNAL ONLY | VOJTECH SZÖCS11

Moving more stuff to GwtCommon

● Having a common module means more responsibility
● Multiple applications use GwtCommon
● GwtCommon modifications should not introduce 

regressions in existing Frontend projects (successful 
build is not enough)

● GwtCommon should not enforce changes in other 
projects, just because some feature is required by one 
particular project



INTERNAL ONLY | VOJTECH SZÖCS12

Some ideas about code reuse

● “Never write the same code twice”

● What if two blocks of code are similar, but still slightly 
different?

● Create some parameters!
● What if you need something more in some case?

● Add conditional logic to decide what to do!
● What if you can't fix one caller without breaking 

another caller?
● Add another layer of abstraction!



INTERNAL ONLY | VOJTECH SZÖCS13

Some ideas about code reuse

● The resulting code is often hard to understand, 
maintain and nearly impossible to extend

● It does not make sense to try to reuse everything just 
because the code looks similar

● Good reusable code is simple and easy to understand



INTERNAL ONLY | VOJTECH SZÖCS14

Code reuse pitfall example

WebAdmin

GWTP Presenter

Main tab Presenter

Main tab with details Presenter

GWTP Presenter

Side tab Presenter

UserPortal



INTERNAL ONLY | VOJTECH SZÖCS15

GwtCommon UI reuse

● Originally, there were no resources in GwtCommon, 
e.g. images, *.css files, *.ui.xml files

● GwtCommon provides UI (widget) abstractions that 
should be implemented in concrete environments, e.g. 
AbstractActionTable vs. SimpleActionTable

● Turns out that some parts of UI are (nearly) identical 
for multiple applications

● Main and sub tab UI (forms and tables)
● Dialog UI



INTERNAL ONLY | VOJTECH SZÖCS16

GwtCommon UI reuse

● Common UI should be moved into GwtCommon
● GWTP Views are architectural components, specific to 

each GWTP application
● UI reuse should focus on UI only (widget level)



INTERNAL ONLY | VOJTECH SZÖCS17

GwtCommon UI reuse

WebAdmin VM General sub tab UI

UserPortal VM General sub tab UI



INTERNAL ONLY | VOJTECH SZÖCS18

GwtCommon UI reuse

● Driven by UserPortal common UI, we will
● Extract UI code into widgets that are Editors of 

corresponding UiCommon models
● Reuse those model-bound widgets

● However, we should extract only stuff that will be used 
more than once

● Trying to extract every piece of UI into GwtCommon 
has no real value except wasted time and energy

● Let's try to be lean and follow YAGNI principle



INTERNAL ONLY | VOJTECH SZÖCS19

That's all folks


