
Reducing DuplicationReducing Duplication

Tomáš Jelínek

Software Engineer

March 5, 2013

Topics covered

● Problem

● Possible solutions

● Builders

● Discussion

Problem 1

Problem 2

Problem 3

Problem 4

Problem – this is still simplified

● Far not all settings listed

● Also list models do some settings (e.g. ~3000 lines

long VmListModel)

● In near future beside VM/Template/Pool also Instnace

Type + Image will complicate this

Problem – Why?

● Cross cutting concerns of:

● Different types like pool/template/vm

● New vs Edit

● User Portal vs Web Admin

Possible Solutions

● Inheritance

● AOP

● Use composition

Builders – My Requirements

● Support chaining

● Transparent support for async builders

● Support composition of builders (composite pattern)

● Simple usage

● Simple API

Builders 1

● Parent of the builders is the Builder
public interface Builder<S, D> {

 void build(S source, D destination, BuilderList<S, D> rest);
}

public abstract class BaseSyncBuilder<S, D> implements Builder<S, D> {

 @Override
 public void build(S source, D destination, BuilderList<S, D> rest) {
 build(source, destination);

 rest.head().build(source, destination, rest.tail());
 }

 protected abstract void build(S source, D destination);

}

● Parent of all sync builders is BaseSyncBuilder

Simple Sinc Builder

class SimpleSyncBuilder extends BaseSyncBuilder<String, StringBuffer> {

 @Override
 protected void build(String source, StringBuffer destination) {
 destination.append(source.charAt(0));
 }

}

Simple Async Builder

class SimpleAsync implements Builder<String, StringBuffer> {

 @Override
 public void build(String source, StringBuffer destination,

BuilderList<String, StringBuffer> rest) {
 AsyncDataProvider.GetSecondLetter(new AsyncQuery(getModel(),
 new INewAsyncCallback() {
 @Override
 public void OnSuccess(Object target, Object returnValue) {
 destination.append(returnValue);
 rest.head().build(source, destination, rest.tail());
 }
 }),source);
 }

}

Simple Usage

StringBuffer someResult = new StringBuffer();

BuilderExecutor<String, StringBuffer> executor =
new BuilderExecutor<String, StringBuffer>(

 new SimpleSyncBuilder(),
 new SimpleAsyncBuilder()
);

executor.build("ab", someResult);

Waiting for Result

BuilderExecutor<String, StringBuffer> executor =
new BuilderExecutor<String, StringBuffer>(

 new BuilderExecutionFinished<String, StringBuffer>(){

 @Override
 public void finished(String source, StringBuffer destination) {
 // done
 }

 },
 new SimpleSyncBuilder(),
 new SimpleAsyncBuilder()
);

 StringBuffer res = new StringBuffer();

 executor.build("ab", res);

Composite Builder

● Just a normal builder

● Can be chained to the rest

● For reusing related builders

new CompositeBuilder<String, StringBuffer>(
SimpleSyncBuilder(),
SimpleAsyncBuilder()

);

Advantages

● simple (the whole infrastructure just 4 classes and 1

interface)

● hides the difference between sync and async builders

(reduces nested anonymous classes)

● modularize cross cutting logic

● naming of small peaces of logic

● makes the uicommon more testable

● makes uicommon more readable

Disadvantages

● lots of small classes

● new approach introduced

Thank you!Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

