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Abstract—Static analysis tools (SATs) often fall short of devel-
oper satisfaction despite their many benefits. An understanding
of how developers in the real-world act on the alerts detected by
SATs can help improve the utility of these tools and determine
future research directions. The goal of this paper is to aid
researchers and tool makers in improving the utility of static
analysis tools through an empirical study of developer action on
the alerts detected by Coverity, a state-of-the-art static analysis tool.
In this paper, we analyze five open source projects as case studies
(Linux, Firefox, Samba, Kodi, and Ovirt-engine) that have been
actively using Coverity over a period of at least five years. We
investigate the alert occurrences and developer triage of the alerts
from the Coverity database; identify the alerts that were fixed
through code changes (i.e. actionable) by mining the commit
history of the projects; analyze the time an alert remain in the
code base (i.e. lifespan) and the complexity of code changes (i.e.
fix complexity) in fixing the alert. We find that 27.4% to 49.5%
(median: 36.7%) of the alerts are actionable across projects, a
rate higher than previously reported. We also find that the fixes
of Coverity alerts are generally low in complexity (2 to 7 lines of
code changes in the affected file, median: 4). However, developers
still take from 36 to 245 days (median: 96) to fix these alerts.
Finally, our data suggest that severity and fix complexity may
correlate with an alert’s lifespan in some of the projects.

Index Terms—static analysis, tools, alerts, warnings, developer
action

I. INTRODUCTION

Modern software projects, both commercial and open
source, are increasingly integrating static analysis tools (SATs)
as a part of their development process [14], [19], [40]. Despite
the benefits of SATs in helping higher software quality [33],
their shortcomings are well-known and well-studied in the
literature [19], [33]. Unactionable, untrustworthy, and incom-
prehensible alerts detected by SATs are some of the major
complaints against these tools [41]. While prior work has
investigated the actionability rate (the rate of true positive
alerts) of SATs [21], [34], [36], there is little empirical
evidence on how developers in the real-world act upon SAT
alerts when they are actively using the tool.

Previously, Guo et al. has studied which Coverity [42] alerts
are likely to be inspected by Linux developers [26]. In recent
years, Marcilo et al. [21] and Zampetti et al. [45] have studied
Java projects that use SATs. Their research investigated the
actionability of the alerts and the time involved in fixing them.
We build upon this prior work by empirically analyzing five
large open source projects as case studies (Linux, Firefox,

Samba, Kodi, and Ovirt-engine) that have been actively using
Coverity, a state-of-the-art commercial SAT, for at least past
five years. The maintainers of these projects confirmed that
they regularly monitor alerts detected by Coverity. We collect
alert history and developer triage of the alerts from the Cover-
ity defect database that is private to the project developers. We
then map the detection history of the eliminated alerts with the
commit history of the affected files to determine if the alert
was fixed by developers making code changes.

Specifically, we want to know the actionability scenario
of SATs within real development context, that is, the alerts
inducing a subsequent developer action in the code. An
empirical evidence of actionability of SATs will inform us
where we currently stand. Furthermore, how long developers
take to fix the alerts; the effort involved in the fix; and what
factors affect the time an alert will remain in the code base will
determine future research directions in prioritizing the alerts
and motivating the developers to the use of SATs. We conduct
our research on the usage of Coverity. The goal of this paper is
to aid researchers and tool makers in improving the utility of
static analysis tools through an empirical study of developer
action on the alerts detected by Coverity, a state-of-the-art
static analysis tool. We begin with asking:

RQ 1: (Occurrence) To what extent do Coverity
alerts occur in terms of alert type?

RQ 2: (Actionability) Which Coverity alerts are
fixed by the developers through code change?

RQ 3: (Lifespan) How long do Coverity alerts
remain in the code before being fixed?

RQ 4: (Fix complexity) What is the complexity of
the code changes that fix a Coverity alert?

Next, we hypothesize that developers will pay attention to
alerts of higher severity as marked by the tool faster than the
alerts lower in severity as severity indicates the impact or risk
of the potential defect pointed out by the alert:

RQ 5: Do Coverity alerts with higher severity have
shorter lifespan?

We also hypothesize that the alerts that are easier to fix will
get fixed quicker than the alerts with a difficult fix:



RQ 6: Do Coverity alerts with lower fix complexity
have shorter lifespan?

In summary, our contributions are:
1) An empirical study of developer action on static analysis

alerts based on the active usage of Coverity, a state-of-the-
art static analysis tool, by five large open source projects;

2) An empirical analysis of complexity of code changes to
fix Coverity alerts; and

3) An empirical analysis of the correlation between fix
complexity and severity of Coverity alerts with the time
the alerts remain in the main code base.

II. BACKGROUND & RELATED WORK

A. Static Analysis Tools: Pros & Cons

SATs detect potential code defects without having to execute
the code [33], and therefore, can be “shifted-left” [11] to find
and prevent defects early in the development process. SATs
detect several types of defects, including security vulnerabili-
ties, performance issues, quality issues, and bad programming
practices (code smells) [36]. For example, the use of static
analysis could have detected vulnerabilities that have been
exploited [38], [40], [44]. The literature denotes the potential
defects detected by SATs as alerts, warnings, violations, or
issues [36]. In this paper, we refer to them as alerts.

SATs are increasingly becoming an integral part of modern
software development [14], [19], [40]. Large software compa-
nies have started building program analysis ecosystems (e.g.
Google’s Tricorder [41], Microsoft’s CloudBuild [24]) that
may integrate multiple static analyzers to its pipeline. Open
source projects also use static analysis in various degrees. Prior
work found that half of the state-of-the-art open source (OSS)
projects have employed SATs [14]. Several commercial [6],
[9], [42] and open source [2], [4], [16] static analysis tools
are available for developers to use.

However, SATs come with several shortcomings which can
make developers turn away from using the tools [33]. SATs can
flood the developers with large volume of alerts that includes a
high rate of unactionable ones which may result in developers
grow a habit of ignoring the SATs altogether [28], [33]. An
unactionable alert may be one of the following [36]:

1) a trivial concern to fix;
2) less likely to manifest in runtime environment; or
3) incorrectly identified due to the limitations of the tool.

Prior research has looked at developer perception towards
SATs. Christakis et al. [19] surveyed developers at Mi-
crosoft to identify barriers to use SATs and the characteristics
developers expect from these tools. The researchers found
that unnecessary rule checkers that are on by default, bad
warning messages, and high false positive rate make SATs
difficult to use while the ability to suppress warnings is an
important need for the developers. These finding align with
Imtiaz et al.’s [30] study of Stack Overflow posts where they
find that developers’ most frequent questions involve how to
ignore alerts based on different criteria (e.g. alert type, code
location etc.); and validation of suspected false positive alerts.

Sadowski et al. [40] performed a similar study in Google
and found unactionable, incomprehensible, and untrustworthy
alerts are reasons that developers do not want to use SATs.
Research has also shown that these challenges are generic to
all static analysis tools [30], [32].

B. Actionability of Static Analysis Tools

Prior research has investigated the actionability rate of
SATs. A common methodology to this work is for the re-
searchers to run SATs with the default configuration over a
sequence of historical revisions of projects to identify the
alerts that come and go between code changes [27], [34],
[36]. Through this method, Liu et al. [36] ran FindBugs [4]
on 730 Java projects to find a small fraction of alerts (less
than 1%) to be fixed by the developers. Kim et al. [34] ran
three SATs on three Java programs and found that only 6% to
9% of the alerts are removed by bug fix changes. Heckman et
al. [27] has run FindBugs on six small to medium scale Java
projects and manually identified the true alerts to find true
positive rate to range between 8.2% to 50.0%. However, the
threat to this methodology in understanding developer action is
that developers are not actively using the tool and monitoring
the alerts [21]. Additionally, developers can tune the tool to
project specific needs [43] to reduce false positives, or disable
certain alert types that they do not deem as important. Tuning
increases the probability of detecting actionable alerts for the
tools as the tool is then customized to the specific project.

Toolmakers and researchers have published their experience
of running SATs in the “real world” [13], [15]. However, to
the best our knowledge, few empirical studies have been con-
ducted on developer action to alerts when the developers were
actively using the tool. In recent work, Marcilio et al. [21] has
studied 246 open source projects and 2 government projects
(all Java projects) where developers use SonarQube [7]. Based
on the data on SonarQube defect database, they find developers
only fix 13% of the alerts on average and take 18.99 days
(median) to fix them. Zampetti et al. [45] has studied 20
Java open source projects that use SATs within Travis CI [8]
pipeline to investigate how often alerts break builds, the type
of the alerts, how long developers take to fix them, and how
do they fix them (e.g. change in source code, or build scripts,
or tool configuration).

Our work differs from [21], [31], [45] in the methodology
of determining actionability. We map alert detection history
with the commit history of the affected files to determine if
the alerts are fixed through code changes as we observed in
our study that tools can stop detecting alert (and therefore,
mark as fixed) due to multiple reasons other than developer
fix (e.g. change in tool configuration, tool update, suppress
alert through source code annotation, deletion of file). Our case
studies include both C/C++ and Java to determine if developer
action on SATs are generic to both languages. Furthermore,
our study also presents an empirical study on the complexity
of code changes when developers are fixing the SAT alerts.



III. CASE STUDIES: TOOL & PROJECTS

In this paper, we analyze five projects that use Coverity.
We collect data from Coverity defect database and respective
project’s source code repository. In this section, we briefly
explain the tools, selected projects, and the data source.

A. Coverity Scan

Coverity [42], developed by Synopsys, is a commercial SAT
and is considered to be one of the best SATs with high fix
rates and low false positives [19], [22]. Synopsys offers a free
cloud-based service for open source projects. The service is
named as ‘Coverity Scan’ [3]. As per the 2017 annual report,
Coverity Scan hosts 4,600 active projects and claims to have
detected 1.1 million defects (as alerts) [37]. Coverity Scan also
maintains a defect database on its own cloud server for each
project that it hosts. The defect database contains information
regarding all the alerts and their respective triage history. In
this paper, we will refer to Coverity Scan simply by the name
of the tool, Coverity.

Coverity supports multiple languages including C/C++ and
Java. Developers have an option to triage1 the alerts on
Coverity’s defect database. Developers can manually triage
information on alert attributes such as classification, action,
and assignee which are initially set as null by the tool when
a new alert is detected. Developers can triage an alert as a
‘False Positive’ (incorrectly identified due to tool limitation)
or as ‘Intentional’ (the alert is correct, but the code is written
intentionally by the developer), in which case Coverity will
stop reporting that alert. Conversely, developers can also triage
an alert as a ‘Bug’. However, developers may not always triage
alerts on Coverity’s defect database, even if they make a code
change to fix the alert or in case of false positives.

Additionally, Coverity provides four tuning features which
can be used to reduce the detection of unactionable alerts based
on project-specific requirements:

• Modeling file: Developers can write modeling files to
overcome false positives that is caused by the absence
of source code for a function during the build [43].

• Code annotations with suppression keywords: Developers
can add suppression keywords to source code to ignore
certain types of alerts in a code location.

• Ignore specific files: Developers can instruct Coverity to
ignore specific files or directories during analysis.

• Disable checker: Coverity comes with a set of rule
checkers (each rule checker identifies a certain type of
alert in the code) for each language that are enabled by
default. Developers have the option to disable a checker.

B. Coverity Defect Database

Coverity maintains a defect database for each of the projects
it hosts. The database contains historical analysis reports along
with the time of the analysis. Aggregating all the analysis
reports, we get the list of all distinct generated alerts. For each

1Triage is a process to screen and prioritize alerts. Coverity uses the term
‘triage’ when developers manually update any information regarding an alert.

alert in the database, we have information on their detection
history, alert type, and impact. Alert type is a categorization
of alerts provided by Coverity based on the rule checker
that detects the alert (e.g. Logically dead code). Each alert
type is assigned an impact level of ‘Low’, ‘Medium’, and
‘High’ by the tool based on the risk severity. When developers
triage an alert to classify as ‘False Positive’ or ‘Intentional’,
Coverity will stop reporting that alert and update its status
to ‘Dismissed’. Otherwise, when Coverity does not detect an
alert anymore when analyzing a new version of the code,
the alert’s status is changed to ‘Fixed’. However, we will
refer to the ‘Fixed’ alerts by the term ‘eliminated’ as alert
can go away either through developer fix or through other
possible ways (e.g. file deletion, tool update, change in the
tool configuration).

When Coverity detects a new alert, the tool may also present
a detailed event history on how the alert is manifested along
with file name and line location for each associated event.
However, in the data that we collected, information on detailed
event history and exact line location are missing for the
majority of the eliminated alerts. Therefore, we could only
use the file location of an alert in order to determine if the
alert was fixed through code change.

C. Projects

We analyzed four large open source projects that are written
in C/C++ and use Coverity’s C/C++ checkers. We also ana-
lyzed one large Java project to investigate if our results are
applicable beyond C/C++. We select these five projects based
on following criteria:

• The projects have used Coverity for at least five years
with a median interval of analysis frequency of less
than one week (therefore, having at least 260 historical
analysis reports);

• The latest analyzed version of project contains at least
100,000 lines of code, excluding blank lines and comment
lines (ensuring large projects);

• The project maintainers have granted the first author
observation access; and

• Developers of these projects have confirmed that they
monitor Coverity reports and how the projects are con-
figured on Coverity (repository locations and analyzed
branches).

Table I lists the details of our five selected projects. The
projects come from a variety of domains: Linux is an operating
system; Firefox is a web-browser; Samba is a file/printer
sharing system; Kodi is a home theater and entertainment
hub; and Ovirt-engine is a server and desktop virtualization
platform.

To ensure that the developers from these projects monitors
Coverity alerts, we reached out to the project maintainers
through respective project’s developer forum or through email-
ing the developers who are listed as admin on respective
project’s Coverity defect database. In our emails and forum



TABLE I
ANALYZED PROJECTS

Project Language Analysis Reports Start Date End Date Interval (days) Analyzed Lines of Code
Linux C/C++ 598 2012-05-17 2019-04-08 3 9,335,805
Firefox C/C++ 662 2006-02-22 2018-10-26 2 5,057,890
Samba C/C++ 714 2006-02-22 2019-01-02 3 2,136,565
Kodi C/C++ 394 2012-08-28 2019-03-19 3 388,929
Ovirt-engine Java 790 2013-06-24 2019-03-18 1 409,018

TABLE II
HOW PROJECTS MONITOR AND CONFIGURE COVERITY

Monitoring Alert Configuring Coverity to Reduce Unactionable Alerts
Project Audit alert Triage alerts Triage Rate Update Modelling file Use code annotations Ignore files Disable checker
Linux Sometimes Sometimes 15.2% Sometimes Never Never Never
Firefox Always Most of the time 36.3% Sometimes Sometimes Sometimes Never
Samba “Regularly monitor and act on it” 54.4% No Information
Kodi No Information 43.2% No Information
Ovirt-engine Most of the time Always 56.5% Never Never Never Never

posts, we also added a survey2 that asks: 1) how frequently the
developers monitor Coverity reports; and 2) how frequently the
developers use the tuning features that Coverity provides. We
used a 5-level Likert scale ranging from Always to Never in
the survey to estimate the frequency. Developers from Linux,
Firefox, and Ovirt-engine completed our survey confirming
they monitor Coverity alerts. While developers from Samba
and Kodi did not complete our survey, in reply to our post
on their developer forums, they have confirmed us that they
monitor Coverity alerts. Another means of confirming that the
developers monitor Coverity alerts is to look at if the alerts
get triaged by the developers on Coverity defect database.
We see the portion of alerts that get triaged (Triage Rate)
on Coverity defect database vary between 15.2% to 56.5%.
Table II summarizes how the five projects monitor Coverity
alerts based on developer response and triage rate. Maintainers
of these projects also confirmed that Coverity analyzes the
‘master’ branch in the database we have access to.

D. Mining Project Repositories

Modern software projects use version control systems (e.g.
Git [5]) that keep historical records of every code change
and associated information. We mined the Git repositories
of the five projects to get the commit history of the project
files. We extracted the full commit history of each file, even
if the file was deleted or renamed at any point. For each
commit, we extract author name; author date; committer name;
commit date; affected files; and the commit diffs (changes
between commits). Furthermore, we determine the date and
time when a commit was merged into the ‘master’ branch
using an open source tool 3. Out of the five analyzed projects,
Firefox uses Mercurial as its version control system, while
the other projects use Git. However, we used a mirrored Git
repository of Firefox to mine commit history as we analyze
every project through the same analysis scripts.

2https://go.ncsu.edu/llgnnrw
3https://github.com/mhagger/git-when-merged

IV. DATA COLLECTION & PREPROCESSING

A. Step 1: Collect Coverity Data

We begin with collecting alert history data from the Coverity
defect database. For each alert, we use the following attributes:

• CID : A unique identifier for each distinct alert;
• Type: Coverity reports the type of each alert based on

the rule checker that detected it;
• Impact: Severity of the alert (High, Medium, Low);
• First Detected: The date an alert was first detected;
• Status: New for alerts that remained in the code at

the time of the last analysis report collected; Fixed for
eliminated alerts; and Dismissed for alerts marked as false
positive or intentional by the developers;

• Classification: The alerts are initially set as ‘Unclas-
sified’ by default. Developers may triage some alerts
to manually classify the alert as Bug; False Positive;
Intentional; Pending.

• File: The full file path of the file where the alert is
detected; and

• Last Snapshot ID: the unique identifier of the last
analysis report an alert was reported by Coverity.

We also use the following attributes of each analysis report
from Coverity defect database in our analysis:

• Snapshot ID: A unique identifier for each analysis report
within each project;

• Date: The timestamp of when the analysis was run; and
• Code Version Date: The timestamp of the source code

version analyzed in the report. This time is nearly iden-
tical to the ‘Date’ field.

B. Step 2: Data Preprocessing

We collected information for 89,125 alerts from Coverity
defect database in Step 1. We then performed a series of data
preprocessing steps:
(a) In our data, some alerts’ first detection date were earlier

than the date of the first analysis report that we collected.
We discarded these alerts from our dataset as we do not

https://go.ncsu.edu/llgnnrw
https://github.com/mhagger/git-when-merged


have the history of the eliminated or dismissed alerts
before the first report, but only the alerts that were still
getting detected at the time of the first report. We discarded
6,091 alerts through this filtering process.

(b) When a file is renamed or moved to a different location,
Coverity assumes that alert as ‘Fixed’ and creates a new
identifier for the same alert detected on the new file path.
As a result, we get duplicates in our data. By analyzing
commit history, we detected if an alert went away due
to file renaming (within the time when an alert was last
detected and first eliminated, there is a commit on the
file that changes its full file path to a new one). If so, we
discarded that alert from our data set. We also investigated
if a new alert of the same type was generated on the
new file location at the time when the alert in the old
file location was eliminated. If yes, we determine the two
alerts as one and update their first and last detection time.
In this way, we identified 252 alerts as duplicates.

(c) Unactionable alerts generated by SATs is a part of our
study. However, we noticed four cases where an unusually
large number of alerts of the same type were detected at
the same time and were eventually eliminated at the same
time in a subsequent analysis report without any of those
alerts being triaged by the developers. These four cases
are summarized:

• For Linux, 18,016 “parse error” alerts were detected
in a report on 2016-11-06 which were all eliminated
in the next analysis report conducted on the same day;

• For Firefox, 8,783 “explicit null dereferenced” alerts
were detected in a report on 2015-03-05 which were
all eliminated together on 2015-04-21;

• For Firefox, 3,085 “misused comma operator” alerts
were detected on 2016-08-09 because of a buggy
Coverity update 4 which were all eliminated in 2016-
08-22;

• For Samba, 2,028 “operands don’t affect result” alerts
were detected in a report on 2015-08-24 which were
all eliminated in the next analysis report conducted
on the same day.

We have identified these four cases when manually in-
specting the count of newly-detected alerts in each analysis
report. The number of newly-detected alerts of a certain
alert type is unusually high in these cases, and therefore, is
an anomaly. Moreover, the alerts were eliminated together
in the same subsequent report which is in the same day
of detection in two of the cases. One explanation behind
these four cases could be an error in the tool configuration
which makes the alerts unactionable. However, given that
these cases are the outliers for the respective projects over
a long period and the large number of alerts generated in
these reports would skew the results of the analysis, we
have discarded these alerts from our analysis.

(d) Coverity may add prefixes (e.g. ‘home/scan/’) with file-
names that can vary in different analysis reports depending

4https://bugzilla.mozilla.org/show bug.cgi?format=default&id=1293956

on how the analysis was performed. We manually iden-
tified these prefixes and corrected the filenames to map
with their respective locations in the repository. Through
these process, we ensure that there is no single alert with
multiple file paths (duplicates) in our data.

(e) External File alerts: We have observed that there can be
alerts for a project on a file that never existed in the
history of the ‘master’ branch of the project repository.
We assume that these files can be compiler include files,
third-party library files, or generated files. Developers
from Firefox and Kodi have confirmed the correctness of
our assumption. As we cannot (or, do not) trace back to
commits of a files that is not in the master branch of the
project repository, we do not have the data on how and
by whom those alerts were handled. Therefore, we discard
these alerts from our analysis. Table III gives an overview
of discarded external file alerts.

TABLE III
DISCARDED ALERTS THAT AFFECT NON-PROJECT FILES

Project External
File Alerts Type of files

Linux 21 (0.1%) compiler include files

Firefox 6,731 (34.2%) complier include files,
binding files, generated codes

Samba 3,953 (48.6%) library files, other branches
Kodi 567 (19.6%) build files, compiler include file
Ovirt-engine 103 (3.4%) generated codes

We validate 39,495 alerts in this step that we use in our
analysis in the rest of this paper.

C. Step 3: Collect Commit History

For each validated alert in Step 2, we refer to the file where
the alert is detected as ‘affected file’. We collect full commit
history of the affected file. For each commit, we also retrieve
the date and time when the commit was merged into the
master branch (‘merge date’). Furthermore, we also collect
information on all code changes made in a commit (‘commit
diff’). We process the commit diff to investigate how many
files were modified in the commit, and the modified codes.

V. DATA ANALYSIS: METRICS & METHODS

In this section, we explain the terminology and repeatable
instructions for computing metrics and classifications we use
in our analysis:

1) Actionable Alert: We define actionable alert as an alert
that developers fix through code changes. Figure 1 gives an
overview of our automated technique for classifying an alert
as actionable. The automated technique works as follows: we
check if there is any commit on the affected file within the time
an alert was first detected and the time the alert was eliminated.
If yes, we check the date when the commit(s) was merged
into the master branch that Coverity analyzes. We check if
the merge date is within the time of last detection and the
time of elimination of the alert. If yes, we further check if the
commit(s) deletes the file or its code diff contains any alert
suppression keyword according to Coverity documentation.

https://bugzilla.mozilla.org/show_bug.cgi?format=default&id=1293956
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Fig. 1. Automatically identifying actionable alerts through alert detection
history and affected file’s commit history

If no, we assume the code change made in the commit(s)
has contributed in fixing the alert, and therefore, the alert is
actionable. In other cases, we classify the alert as unactionable.

Regarding the New alerts (Coverity detected the alert in the
last analysis report we collected) that is alive for less than the
median lifespan of all actionable alerts for that project, we do
not classify them as either actionable or unactionable with the
rationale that the time frame for these alerts are not sufficient
to make a decision.

2) Fix Commit: For an actionable alert, if we can identify
the specific commit that fixed an alert, we refer to the commit
as ‘fix commit’. If we find there is only one commit merged
into the main code base within the time an alert is last detected
and first eliminated, we classify that as a fix commit. If there
is more than one commit within that time window, we further
look for the keyword ‘coverity’ or ‘CID’ 5 in the commit
messages, and if there is only a single commit with any of the
two keywords in the commit message, we classify that commit
as a fix commit. Otherwise, we are unable to track fix commits
for an alert. Therefore, while measuring fix complexity, we
only analyze the alerts that we could track a fix commit.

3) Lifespan: The lifespan is approximated to be the time of
how long an alert remains in the main code base. To measure
this, we take the time difference in days between the last and
the first time an alert was detected. For the alerts that changed
IDs due to file renaming, we calculate the lifespan by taking
the difference between the first detection date of the old alert
id and the last detection date of the new alert id.

4) Actionability Rate: We compute the actionability rate
by dividing the count of actionable alerts by the total count
of actionable and unactionable alerts as classified in V-1.

5We look for a regex matching with ‘cid’ followed by an whitespace or
digit to ensure minimum false positives.

5) Median Rate for Alert Types: : We present an analysis
on occurrences, actionability, lifespan, and fix complexity for
top 10 alert types in Section VI. For C/C++ alert types, we
measure the metrics in two steps: 1) take the median count
of a metric for all the alerts from that alert type under each
project; and 2) take median count of the median rates from
the four projects. We only do the first step for Java alert types
as we have only one Java project,

6) Complexity of Fix Commit: We followed Li et al.’s
[35] approach to measure complexity of code changes in fix
commits. We measure five metrics which are explained below.
While the first three metrics are a direct adoption from Li et
al.’s work, we also measure the code changes made only in
the affected file in which the alert was detected in the last two
metrics based on the assumption that changes in other files
may be non-related to the fix of the alert.

a Affected File Count: The number of files modified in the
commit.

b Net Lines of Code (LOC) Change: The number of LOC that
were modified across all the files.

c Net Logical Change: “Logical change” is a grouping of
consecutive lines changed within a commit. For this metric,
we count the number of logical changes across all the files.

d In-File Lines of Code (LOC) Change: The number of LOC
that were modified only in the affected file.

e In-File Logical Change: The number of logical changes only
in the affected file.

In measuring these metrics, we also follow Li et al.’s [35]
approach of preprocessing the commit diffs by removing blank
lines and comment lines [1]. However, unlike Li et al., we do
not perform any filtering on the files based on their extension
to filter out non-source code files as we observed the fix
commits affect 1-3 files on average and therefore, the process
would result in diminishing returns.

In the case where developers have fixed multiple alerts
through a single fix commit, we normalized all the metrics for
that commit by a division with the number of alerts fixed in
order to truly reflect the complexity of code changes required
to fix each single alert in a fix commit.

7) Statistical Tests: We below describe two statistical tests
that we use in our analysis.

a Spearman’s Rank Correlation test: The test measures the
strength and direction of association between two ranked
variables. The test generate two values - a) correlation
coefficient (r), and b) statistical significance (p − value).
The value of correlation coefficient will be between −1.00
(perfect negative correlation) and +1.00 (perfect positive
correlation) and is interpreted as follows [25]: 0.00 ≤ r ≤
0.19 means a very weak correlation; 0.20 ≤ r ≤ 0.39 means
a weak correlation; 0.40 ≤ r ≤ 0.69 means a moderate
correlation; 0.70 ≤ r ≤ 0.89 means a strong correlation;
0.90 ≤ r ≤ 1.00 means a very strong correlation.

b Mann-Whitney U test: A non-parametric test of the null
hypothesis that it is equally likely that a randomly selected
value from one sample will be less than or greater than a



TABLE IV
ACTIONABLE ALERTS

Prject Total
Alerts

Eliminated
Alerts

Actionable
Alerts

Triaged
Bug

Linux 17133 10336 (60.3%) 6047 (36.7%) 624 (3.6%)
Firefox 12945 9522 (73.6%) 6193 (48.4%) 1062 (8.2%)
Samba 4186 3055 (73.0%) 1148 (27.4%) 102 (2.4%)
Kodi 2325 1538 (66.2%) 1146 (49.5%) 369 (15.9%)
Ovirt-engine 2906 1302 (44.8%) 905 (31.3%) 75 (2.6%)

TABLE V
TOP 10 ALERT TYPE OCCURRENCES FOR C/C++ PROJECTS

Alert Type Im-
pact

Occurr-
ence

Action-
ability

Lifespan
(days)

Resource leak H 844.0 49.9% 121.5
Unchecked return value M 469.0 38.7% 109.5
Logically dead code M 385.0 44.3% 89.5
Explicit null dereferenced M 304.0 38.4% 83.2
Dereference after null check M 273.5 47.2% 178.0
Dereference before null check M 254.0 62.3% 51.0
Various (a type by Coverity) M 214.5 33.4% 660.5
Dereference null return value M 212.0 48.1% 65.0
Uninitialized scalar variable H 170.0 57.0% 24.5
Missing break in switch M 141.5 41.6% 173.8

randomly selected value from a second sample. The test
generates a p− value that is if less than 0.05, we interpret
there is a significant difference between the tested samples.

VI. FINDINGS

We present the findings for each of our research questions:

A. RQ1: (Occurrence) To what extent do Coverity alerts occur
in terms of alert type?

For this question, we investigate the total number of oc-
currences and the respective frequency of each alert type.
The second column of Table IV shows the number of total
alerts for each analyzed project. For the C/C++ projects, the
alerts fall under 193 distinct types. However, only 67 alert
types (34.7%) occur in all four projects. Figure 2 shows the
cumulative distribution of occurrence per percentages of alert
types, starting from the most frequent alert types for each
project. We see that 80% occurrences of alerts comes from
roughly 20% of the alert types (13.4% to 22% across projects,

TABLE VI
TOP 10 ALERT TYPE OCCURRENCES FOR JAVA PROJECT

Alert Type Im-
pact

Occurr-
ence

Action-
ability

Lifespan
(days)

Explicit null dereferenced M 700.0 10.9% 136.5
Useless call M 494.0 1.6% 4.0
Dereference null return value M 388.0 48.2% 77.0
Bad casts of object references L 197.0 90.9% 165.0
Problems with implementa-
tion of equals()

L 176.0 13.1% 152.0

Dubious method used L 97.0 73.2% 139.0
Missing call to superclass M 95.0 31.6% 39.0
Dereference after null check M 62.0 69.4% 122.0
Inner class could be made
static

L 57.0 40.4% 91.0

Resource leak H 55.0 29.1% 56.5

Fig. 2. Cumulative Distribution Functions (CDFs) of the frequency of
occurrence for the percentages of alert types for each project. The axes mean
X% of alert types cause Y% of alert occurrences.

Fig. 3. Cumulative Distribution Functions (CDFs) of the frequency of
actionability for the percentages of alert types for each project. The axes
mean X% of alert types cause Y% of actionable alerts

median: 19%). Previously, Liu et al. applied FindBugs on Java
projects and found that 10% of the alert types causes 80%
of all the alerts. For the single Java project in our dataset,
Ovirt-engine, 13% of the alert types causes 80% of the alerts.
Table V and VI shows the top 10 alerts types, respectively, for
C/C++ projects and for the single Java project. We find that
‘Resource Leak’ and ‘Explicit null derefrenced’ are the most
occurred alert type for C/C++ projects and the Java project,
respectively.

B. RQ2: (Actionability) Which Coverity alerts are fixed by the
developers through code change?

We find that the actionability rate for the five projects vary
between 27.4% to 49.5% as shown in the fourth column of
Table IV. The result is higher than previously reported [21],
[34]. Furthermore, for C/C++ projects, we find only 47 alert
types (24.4%) to have at least one actionable alert in each of
the projects. Figure 3 also indicates that top 20% alert types
constitutes 80% actionable alerts similar to what we have seen
for occurrences (9.5% to 21% across projects, median: 19.4%).
Table V shows that the actionability rate varies between 33.4%
to 62.3% for the top C/C++ alert types. Table VI shows the
actionability rates for the top Java alert types. We see while



TABLE VII
CATEGORIES OF UNACTIONABLE ALERTS

Project Total Alerts Unactionable
Alerts Alive alerts Triaged

False Positive
Triaged

Intentional
File

Deleted
Suppressed

in Code
Eliminated through
undetermined ways

Linux 17133 10446 (61.0%) 4530 (26.4%) 738 (4.3%) 781 (4.6%) 342 (2.0%) 152 (0.9%) 3903 (22.8%)
Firefox 12945 6590 (50.9%) 1256 (9.7%) 963 (7.4%) 982 (7.6%) 215 (1.7%) 90 (0.7%) 3084 (23.8%)
Samba 4186 3038 (72.6%) 904 (21.6%) 106 (2.5%) 73 (1.7%) 80 (1.9%) 5 (0.1%) 1870 (44.7%)
Kodi 2325 1168 (50.2%) 373 (16.0%) 84 (3.6%) 319 (13.7%) 95 (4.1%) 0 (0.0%) 297 (12.8%)
Ovirt-engine 2906 1988 (68.4%) 107 (3.7%) 1280 (44.0%) 203 (7.0%) 26 (0.9%) 10 (0.3%) 362 (12.5%)

TABLE VIII
MEDIAN ALERT LIFESPAN (IN DAYS)

Project Actionable
Alerts

Alerts Marked
as Bug

Unactionable
Eliminated

Linux 245.0 184.0 231.0
Firefox 124.0 64.0 174.0
Samba 39.5 200.0 46.0
Kodi 36.0 2.0 56.0
Ovirt-engine 96.0 43.0 152.0

‘Bad casts of object reference’ has high actionability (90.9%),
‘Useless call’ on the other hand have very low actionability
(1.6%) among the top Java alert types.

Table VII shows a categorization of unactionable alerts
based on how they were eliminated. We find a large number
of unactionable alerts got eliminated in a way that we could
not determine. The possible ways could be:

• Developers used tuning features (modeling file6, ignore
alerts, or ignore files) to suppress unactionable alerts;

• An update in the Coverity tool; or
• Code change in other areas than the affected file.

C. RQ3: (Lifespan) How long do Coverity alerts remain in
the code before being fixed?

We find the median lifespan of actionable alerts to vary
between projects (36 to 245 days) as shown in Table VIII. We
further investigated if the alerts that developers triage as Bug
differs in their lifespan from the actionable alerts that are not
triaged as Bug as we conjecture that the alerts triaged as Bug
are deemed as severe defects by the developers and require
mandatory addressing. For Linux, Firefox, and Kodi, we find
that alerts triaged as Bug have significantly shorter lifespan
(p < .05 using Mann-Whitney U test) than other actionable
alerts while for Samba the relation is in the opposite direction.
For Ovirt-engine, we do not find a significant difference. Table
V and VI show the median lifespan for top alert types.

D. RQ4: (Fix complexity) What is the complexity of the code
changes that fix a Coverity alert?

Table IX shows all the metrics we use to measure fix
complexity of the code changes to fix Coverity alerts. All the
metrics indicate low complexity of the code changes for Linux,
Samba, and Kodi. However, for Firefox and Ovirt-engine, we
see that net LOC change and net Logical change is high despite

6Coverity modeling file for project Samba: https://github.com/samba-team/
samba/blob/master/coverity/coverity assert model.c

changes in the affected file being still low in complexity. A
possible reason could be that for these two projects, developers
fixed the alerts while making other changes to the files which
is why we find a larger change in totality (i.e. alert fix is
not the only action in the commit). To control for this, we
further investigate only the alerts that are triaged as Bug as we
conjecture developers would push a dedicated commit while
fixing an alert they identified as Bug. Table IX also shows
the metrics to measure fix complexity only for the alerts
that were marked as Bug, We see that for all the projects,
including Firefox and Ovirt-engine, all the metrics indicate
low complexity code changes. Therefore, our results suggest
that fixing Coverity alerts require low complexity code change.

As we could not identify the fix commit for all the action-
able alerts, our result might get biased due to the dominance of
few alert types while measuring fix complexity. Therefore, we
further investigate fix complexity across alert types. We could
identify at least one fix commit for 173 alert types across five
projects. In Table X, we present the findings for top 10 alert
types in terms of the number of fix commits that we could
track for. We find that each alert type exhibits similar pattern
of complexity (1 to 4.5 units of logical changes across all files)
as the overall fix complexity of all the alerts.

E. RQ5: Do Coverity alerts with higher severity have shorter
lifespan?

We correlate impact levels (High, Medium, Low) set by the
Coverity tool for each of the alert with the actionable alerts’
lifespan. Specifically, we compute Spearman’s correlation for
each of the five projects where the null hypothesis is that there
exists no monotonic correlation between severity and lifespan
of an alert. Table XI shows the Spearman’s coefficients along-
side median lifespan for alerts of each impact levels. We do
not find a significant correlation between severity and lifespan
for any project, except Kodi. For Kodi, we get p < .05 which
suggests that the null hypothesis is rejected and there exists a
weak negative correlation (as hypothesized) between severity
and lifespan which tells us that alerts with higher severity get
fixed faster than lower severe ones.

F. RQ6: Do Coverity alerts with lower fix complexity have
shorter lifespan?

We correlate fix complexity with lifespan for alerts across
all five projects using Spearman’s correlation where the null
hypothesis is that there is no monotonic correlation between
an alert’s fix complexity and lifespan. However, as we have

https://github.com/samba-team/samba/blob/master/coverity/coverity_assert_model.c
https://github.com/samba-team/samba/blob/master/coverity/coverity_assert_model.c


TABLE IX
FIX COMPLEXITY

Project Fix Commit tracked Affected Files net LOC Change net Logical Change In-File LOC change In-File Logical change
All Alerts
Linux 2299 1.0 4.0 1.5 3.0 1.0
Firefox 1835 3.0 40.7 11.0 5.0 1.7
Samba 639 1.0 3.0 1.0 2.0 1.0
Kodi 469 1.0 6.2 2.0 4.0 1.0
Ovirt-engine 666 1.5 24.9 5.5 7.0 2.0
Alerts Marked as Bug
Linux 294 1.0 2.0 1.0 2.0 1.0
Firefox 345 1.0 9.5 3.0 4.0 1.5
Samba 27 1.0 5.0 1.0 4.0 1.0
Kodi 46 1.5 6.7 3.0 2.0 1.0
Ovirt-engine 68 1.0 4.0 2.0 4.0 1.0

TABLE X
FIX COMPLEXITY FOR TOP ALERT TYPES (IN TERMS OF THE NUMBER OF TRACKED FIX COMMITS)

Alert Type Fix Commit tracked Affected Files net LOC Change net Logical Change In-File
LOC change

In-File
Logical change

Uninitialized scalar field 497 2.5 13.3 4.5 4.0 1.0
Resource leak 493 1.0 6.0 2.0 4.0 2.0
Logically dead code 363 1.0 5.0 1.5 4.0 1.0
Unchecked return value 337 1.0 16.0 3.8 5.0 1.4
Explicit null dereferenced 296 1.1 12.5 3.0 3.3 1.0
Dereference null return value 284 1.0 10.0 2.0 6.0 2.0
Uninitialized scalar variable 245 1.0 2.0 1.0 2.0 1.0
Dereference before null check 227 1.0 6.0 2.0 4.0 2.0
Dereference after null check 210 1.0 6.2 1.5 4.6 1.0
Uninitialized pointer field 159 2.0 13.3 4.1 5.0 1.0

TABLE XI
CORRELATION BETWEEN ALERT’S SEVERITY AND LIFESPAN

Project r
High Alert
Lifespan

Medium Alert
Lifespan

Low Alert
Lifespan

Linux -0.02 217.0 248.0 206.0
Firefox 0.0 154.0 89.0 105.5
Samba -0.01 36.0 56.0 18.0
Kodi* -0.29 2.0 26.5 416.0
Ovirt-engine -0.03 89.0 77.0 129.0

multiple metrics to measure fix complexity, we compute
correlation with lifespan individually for each of the metrics:

• Affected Files: We get p < .05 for each of the projects
except Kodi and Samba to reject the null hypothesis.
Linux, Firefox, and Ovirt-engine has a positive correla-
tion coefficient of 0.05, 0.17, and 0.40 respectively.

• Net LOC change: We get p < .05 for each of the projects
to reject the null hypothesis. Linux, Firefox, Samba, Kodi,
and Ovirt-engine has a positive correlation coefficient of
0.09, 0.20, 0.16, 0.15, and 0.44 respectively.

• Net Logical change: We get p < .05 for each of
the projects except Linux to reject the null hypothesis.
Firefox, Samba, Kodi, and Ovirt-engine has a positive
correlation coefficient of 0.20, 0.12, 0.10, and 0.44 re-
spectively.

• In-File LOC change: We get p < .05 for each project to
reject the null hypothesis. Linux, Firefox, Samba, Kodi,
and Ovirt-engine has a positive correlation coefficient of
0.06, 0.12, 0.11, 0.22, and 0.18 respectively.

• In-File Logical change: We get p < .05 for each project
except Linux and Samba to reject the null hypothesis.
Firefox, Kodi, and Ovirt-engine has a positive correlation
coefficient of 0.07, 0.20, and 0.20 respectively.

We find that Firefox and Ovirt-engine show a significant
positive correlation between fix complexity and lifespan in
all the metrics. However, the strength of the correlations vary
between very weak correlation to moderate correlation.

VII. LESSONS LEARNED

We find actionability rate in our case studies to be higher
than previously reported in similar studies [21], [36]. One
explanation is that Coverity focuses only on security and
reliability alerts unlike SonarQube in [21] which also looks
for code smells and minor issues. Therefore, Coverity de-
tects a smaller number of alerts with higher probability of
actionability. Moreover, developers may leverage the tuning
features of Coverity to reduce false positives. Prior work
[41] conjectures that SATs need to have an actionability rate
around 90% to be trusted by the developers. Sadowski et al.
[41] shows Google’s in-house static analysis checkers with
strict actionability requirement to achieve an actionability rate
around 95%. However, in this paper, we analyze projects
from different organizations that use a commercial external
tool. Given that 1) Coverity is a reputed tool with a narrow
focus towards security and reliability errors; and 2) developers
from large-scale open source projects are actively monitoring
the alerts and can tune the tool configurations as needed —
our empirical evidence shows that the actionability rate



of SATs in the real word is around 36.7% (median rate
across five case studies), better than previously reported,
but still lags far behind the ideal.

We also find that fixing Coverity alerts generally require
small changes in code. Another explanation could be that
developers only tend to fix the easy-to-fix alerts. However, we
also find low complexity fixes for the alerts that were triaged
as a Bug (we conjecture that developers triage an alert as a
Bug based on severity and before any effort estimate of the
fix). A complaint against SATs is that alerts can be expensive
to fix [40]. Therefore, SATs can motivate the developers in
quickly addressing the alerts by showing an estimate of effort
for the fix. Prior work has also shown that the tool providing
resolution suggestion alongside the alert would be useful for
the developers [30], [32]. Liu et al. [36] has proposed an
approach to automatically identify fix patterns of SAT alerts
through convolutional neural network that leverages past fixes
of alerts from the developers. We conjecture that automated
fix of SAT alerts is a promising field of future research as our
empirical evidence shows that fixes of static analysis alerts
are low in complexity – 1 to 2 units of logical changes in
the affected file.

We find varying results for the lifespan of actionable alerts
across projects and how severity and fix complexity correlate
with the lifespan. One explanation is that projects have dif-
ferent development structure and different monitoring policy
for Coverity alerts. However, as a common pattern, we find
four out of five projects do not prioritize alerts based on their
severity level set by the tool. Conversely, three out of five
projects fix alerts that are triaged as a bug by their developers
faster than the rest of the actionable alerts. While identification
of actionable alerts from SATs is a well-studied field in the
literature (e.g. [17], [18], [29], [39]), future research should
also focus on prioritizing alerts that can be a critical issue,
for example security defects, so that developers can know
which alerts require immediate addressing.

VIII. THREATS TO VALIDITY

Our methodology assumes that if there is any code change in
the affected file within the time the alert was last detected and
first eliminated, developers have made code changes to fix the
alert. Otherwise, we classify the alert as unactionable. There
are two threats to this methodology: 1) The code change in the
affected file can be unrelated to the alert, and 2) Developers
can make code changes in files other than the affected one to
fix the alert in which case we would be falsely classifying the
alert as unactionable. However, as we do not have the data on
the associated events and the exact code location of each event
for an alert (mentioned in III-B), we cannot further investigate
this threat.

Our analysis of fix complexity relies on accurate tracking of
fix commits for an alert. To validate fix commit tracking, the
first author manually looked at 25 randomly selected alerts
from each project for which our automated technique could
track a fix commit. The author looked at the alert type and
the commit message to determine if the commit fixes the

alert. From Linux, Firefox, Samba, Kodi, and Ovirt-engine,
the author could validate respectively 18, 12, 21, 19, and 21
commits that they were a fix to the alert as explained in
the commit message. For the rest of the cases, the commit
messages do not specifically address the alert and therefore,
we could not validate if they are indeed a fix for the alert.

Furthermore, there can be inaccuracies and inconsistency
in the data that we collected from Coverity. We explained
our data preprocessing steps in Section IV to minimize this
threat. Any inconsistency between the timestamps of an alert’s
detection history and the affected file’s commit history can also
harm our analysis.

External Validity: SATs can differ in their underlying tech-
nology and objectives. SATs can adopt various independent
techniques, such as pattern matching, symbolic execution,
data flow analysis, and formal verification while the tools
can also vary in their degree of sensitivity to control-flow,
context, and execution path analysis [22]. Therefore, our
choice of Coverity as the targeted SAT poses a threat to
how much our findings are representative of static analysis
alerts in general. As a commercial tool, Coverity’s underlying
technology is not public. However, relevant materials suggest
that Coverity uses multiple techniques, including, but not
limited to: pattern matching, statistical, data-flow, inter and
intra-procedural analysis [10], [20]; and covers a broad range
of security and reliability errors [10], [22] (confirmed by
our study). Furthermore, Coverity encompasses FindBugs [12]
rules for Java where FindBugs is a well-known open source
SAT. Coverity is regarded as state-of-the-art [19], [22] and is
used widely in the industry [23]. Therefore, we believe the
threat is minimal and our findings represent how developers
in the real-world are acting on SAT alerts in general.

IX. CONCLUSION

In this paper, we empirically study five open source projects
as case studies that have been actively using Coverity, a static
analysis tool, with an aim to understand how developers act
on static analysis alerts. We find that the portion of total alerts
that developers fix through code changes vary between 27.4%
to 49.5% across projects. We also find that the developers
generally take a long time to fix the alerts despite the fixes
being low in complexity, and the factors that affect the time
may vary from project to project. Our findings provide the
latest empirical evidence on the actionability of static analysis
alerts. Furthermore, based on our findings, we suggest that -
1) future research should focus on prioritizing critical alerts
that require immediate addressing of the developers; and 2)
toolmakers may consider motivating the developers in fixing
the alerts by providing an estimate of required effort and
resolution suggestions.
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