[ovirt-devel] [VDSM] [JSONRPC] early, coarse grained benchmarks

Nir Soffer nsoffer at redhat.com
Thu Nov 13 20:35:30 UTC 2014


----- Original Message -----
> From: "Francesco Romani" <fromani at redhat.com>
> To: "engine-devel at ovirt.org" <devel at ovirt.org>
> Sent: Thursday, November 13, 2014 6:47:04 PM
> Subject: Re: [ovirt-devel] [VDSM] [JSONRPC] early, coarse grained benchmarks
> 
> ----- Original Message -----
> > From: "Piotr Kliczewski" <piotr.kliczewski at gmail.com>
> > To: "Francesco Romani" <fromani at redhat.com>
> > Cc: "engine-devel at ovirt.org" <devel at ovirt.org>
> > Sent: Monday, November 10, 2014 4:06:38 PM
> > Subject: Re: [ovirt-devel] [VDSM] [JSONRPC] early, coarse grained
> > benchmarks
> > 
> > Great work!
> > 
> > On Mon, Nov 10, 2014 at 3:50 PM, Francesco Romani <fromani at redhat.com>
> > wrote:
> > > Hi everyone,
> > >
> > > I'd like to share initial profiles of VDSM comparing
> > > XMLRPC and JSONRPC, plus two patches optimizing the latter.
> > >
> > > While the low-level profiler (yappi) is now working nicely,
> > > and this is a good building block, I'm not really satisfied about
> > > the testcase - altough it is a fair approximation of reality;
> > > most important, I'm not satisfied about benchmark driver, which
> > > is too coarse grained.
> > >
> > > The benchmark driver is a simple python script using the REST APIs
> > > of Engine.
> > >
> > > I'd like to be able to bypass Engine, but vdsClient is not good enough:
> > > no JSONRPC option yet.
> > >
> > 
> > Once I have a bit o time will work on it.
> 
> Well, it's on my list as well since long time so no pressure.
> 
> I'm profiling four major flows at the moment, and improving tools along the
> way.
> 
> Here's my series, still being worked on and not yet ready for review (still
> draft for this reason)
> 
> http://gerrit.ovirt.org/#/q/status:open+project:vdsm+branch:master+topic:profile_runtime,n,z
> 
> Here we have
> 1. one patch to start/stop profiling at runtime using vdsClient

Note that stopping yappi may segfault, as yappi is using unsafe iteration
on Python internal link list without locking.

If we add such option, it should work only from local connection.

> 2. one simple (simplistic?) benchmark runner script
> 
> more will come as need arises. A proper wiki page about how to profile VDSM
> is planned as well.
> 
> The flow which I'm testing are
> 1. VM startup
> 2. VM shutdown
> 3. VM list
> 4. VM getAllVmStats
> 
> with focus on VDSM side, not all the flow; thus, I'm intentionally ruling out
> Engine from the picture.
> 
> 1 and 2 because of https://bugzilla.redhat.com/show_bug.cgi?id=1155146
> 3 and 4 because of https://bugzilla.redhat.com/show_bug.cgi?id=1110835
> 
> So far, the profile of #2 was the more puzzling, as no clear bottleneck
> emerged yet. A new deeper round
> is scheduled ASAP.
> I found optimizations that affect 1, 3, 4, especially with JSONRPC.
> Unfortunately, I can't yet test
> with vdsClient (see above). Will follow up on that ASAP.
> 
> Patches, in order of readiness for review:
> 
> http://gerrit.ovirt.org/#/c/35024/
> http://gerrit.ovirt.org/#/c/34989/
> http://gerrit.ovirt.org/#/c/35139 (DRAFT)
> http://gerrit.ovirt.org/#/c/35140 (DRAFT)
> 
> Let's see the effect of these in the #3 flows.
> Scenario:
> RHEL 6.5 on minidell running VDSM master + patches, with 150 VMs each one 1

What is the cpu usage and load during the test? In previous tests you had nice
graph with this data.

> VCPU, 16 MB (megs) RAM and 1 GB HDD
> on ISCSI. Run 300 times
> "vdsClient -s 0 list table"

This is not a good test - you just overload vdsm. Instead, run this verb in a more
typical rate (like engine does) and limit the test by the running time, not by the
number of calls.

Running like this will show that the patched version needs less cpu and complete more
calls during the test duration (e.g. 5 mintues).

> 
> vanilla VDSM:
> average=6985ms min=3220ms max=11880ms
> response time: percentage
> <3000ms: 0.0
> <3500ms: 8.3
> <4000ms: 18.3
> <4500ms: 23.0
> <5000ms: 27.7
> <5500ms: 31.0
> <6000ms: 36.3
> <6500ms: 41.0
> <7000ms: 49.0
> <7500ms: 54.7
> <8000ms: 59.0
> <8500ms: 66.0
> <9000ms: 71.7
> <9500ms: 79.7
> <10000ms: 88.3
> <10500ms: 96.3
> <11000ms: 99.0
> <11500ms: 99.7
> <12000ms: 100.0
> 
> patched VDSM:

What is "patched"? which patches are applied?

> average=5761ms min=2830ms max=11450ms
> response time: percentage
> <3000ms: 0.3
> <3500ms: 6.7
> <4000ms: 20.7
> <4500ms: 30.7
> <5000ms: 39.7
> <5500ms: 48.0
> <6000ms: 56.3
> <6500ms: 66.3
> <7000ms: 72.3
> <7500ms: 80.0
> <8000ms: 87.7
> <8500ms: 94.3
> <9000ms: 97.7
> <9500ms: 98.0
> <10000ms: 98.7
> <10500ms: 99.3
> <11000ms: 99.7
> <11500ms: 100.0
> <12000ms: 100.0
> 
> See attachment for an oocalc spreadsheat with raw samples and graph
> 
> profiles.
> Vanilla VDSM:
>          243874010 function calls (349761179 primitive calls) in 2612.654
>          seconds
> 
>    Ordered by: internal time
>    List reduced from 883 to 20 due to restriction <20>
> 
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
> 196905/49111117  500.567    0.003 1002.618    0.000 copy.py:144(deepcopy)
> 120996/4106203  217.146    0.002  998.929    0.000
> copy.py:251(_deepcopy_dict)
>  39443308  192.752    0.000  217.518    0.000 copy.py:261(_keep_alive)
>       859  149.007    0.173  149.466    0.174
>       storage_mailbox.py:621(SPM_MailMonitor._handleRequests)
> 601/1891502  147.901    0.246  579.963    0.000
> xmlrpclib.py:765(Marshaller.dump_struct)
>  65493648  128.666    0.000  169.473    0.000 string.py:511(replace)
> 7858586/32213416   95.784    0.000  209.567    0.000
> encoder.py:284(JSONEncoder._iterencode)
>  21831216   89.865    0.000  259.338    0.000 xmlrpclib.py:167(escape)
> 7858587/20679836   80.741    0.000  196.755    0.000
> encoder.py:213(JSONEncoder._iterencode_dict)
> 601/12515060   66.632    0.111  579.970    0.000
> xmlrpclib.py:683(Marshaller.__dump)
>    227968   50.938    0.000   59.783    0.000
>    __init__.py:764(UserGroupEnforcingHandler.emit)
>    155279   45.445    0.000    5.345    0.000 posixpath.py:94(splitext)
>    133463   45.351    0.000  104.987    0.001 __init__.py:1175(Logger.handle)
>   7290900   45.228    0.000  149.552    0.000
>   xmlrpclib.py:744(Marshaller.dump_unicode)
>       601   43.538    0.072    1.056    0.002
>       socket.py:196(_socketobject.accept)
>  35095608   31.967    0.000   31.967    0.000 copy.py:197(_deepcopy_atomic)
>     50498   24.912    0.000   55.671    0.001 inspect.py:247(getmembers)
> 7479142/8217142   24.764    0.000  150.280    0.000
> encoder.py:180(JSONEncoder._iterencode_list)
>     75750   19.871    0.000   75.819    0.001
>     vm.py:2271(Vm._getRunningVmStats)
>   4447686   17.603    0.000   17.603    0.000
>   sampling.py:323(AdvancedStatsFunction.interval)
> 
> 
> Patched VDSM:
>          165586271 function calls (181657572 primitive calls) in 2406.080
>          seconds
> 
>    Ordered by: internal time
>    List reduced from 1045 to 20 due to restriction <20>
> 
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
> 51229/51594  198.728    0.004  184.402    0.004
> Monitor.py:182(GuestMonitor._should_run)
>    234244  183.784    0.001  570.998    0.002
>    vm.py:2274(Vm._getRunningVmStats)
> 647/1891502  173.119    0.268  671.222    0.000
> xmlrpclib.py:765(Marshaller.dump_struct)
> 66247525/66247536  150.364    0.000  192.790    0.000 string.py:511(replace)
>       653  118.867    0.182  119.219    0.183
>       storage_mailbox.py:621(SPM_MailMonitor._handleRequests)
> 22052164/22082512   90.992    0.000  294.362    0.000
> xmlrpclib.py:167(escape)
> 637/12640708   75.551    0.119  671.442    0.000
> xmlrpclib.py:683(Marshaller.__dump)
> 5096229/5096259   66.229    0.000   64.007    0.000
> utils.py:296(convertToStr)
>   7200900   49.677    0.000  161.784    0.000
>   xmlrpclib.py:744(Marshaller.dump_unicode)
>   1318320   39.141    0.000   39.141    0.000 vm.py:610(compute_latency)
> 57937/57940   37.975    0.001   80.458    0.001 inspect.py:247(getmembers)
>    234244   36.289    0.000  155.929    0.001
>    vm.py:519(VmStatsThread._getDiskStats)
>    234244   35.013    0.000   46.974    0.000
>    vm.py:2359(Vm._getGraphicsStats)
>    365102   24.819    0.000  106.858    0.000 glob.py:18(iglob)
>    234244   23.588    0.000   32.139    0.000
>    vm.py:402(VmStatsThread._getBalloonStats)
>    439440   22.295    0.000   22.295    0.000 vm.py:595(_calcDiskRate)
>    439440   22.178    0.000   61.320    0.000 vm.py:607(_calcDiskLatency)
>    834132   21.402    0.000   21.402    0.000 vm.py:1311(Vm._get_lastStatus)
>   1071684   19.455    0.000   24.374    0.000 pthreading.py:77(Lock.release)
>   2961805   18.907    0.000   61.027    0.000
>   xmlrpclib.py:737(Marshaller.dump_string)
> 

This look strange:

vanila vdsm:   75750   19.871    0.000   75.819    0.001  vm.py:2271(Vm._getRunningVmStats)
patched vdsm: 234244  183.784    0.001  570.998    0.002  vm.py:2274(Vm._getRunningVmStats)

The second profile is doing about 3 times more Vm._getRunningVmStats calls,
which takes 10 times more cpu time(?!).

We don't have any info on the load - maybe vdsm is overloaded in both runs, which
can explain why it does 1/3 of the work vs the patched version, but the patched
version is probably overloaded as well, which can explain the much higher
cpu time.

I suggest to check the cpu usage, and do *not* make profiles where vdsm uses more
then 100% cpu.

Lets profile much lower load to understand where time is taken.

> Open points:
> * profile remaining flows again and report like this (in progress for
> getAllVmStats)
> * add wiki page
> * find out why there is a so high minimum price for list verb
> * profile JSONRPC (needs patches to vdsClient)

Comparing jsonrpc would be very interesting - but we don't have a jsonrpc
client yet, so you better use the engine for this intead of vdsclient.

Nir



More information about the Devel mailing list