------=_Part_233010_1164979986.1404119674471
Content-Type: text/plain; charset=utf-8
Content-Transfer-Encoding: 7bit
----- Original Message -----
From: "Francesco Romani" <fromani(a)redhat.com>
To: "Nir Soffer" <nsoffer(a)redhat.com>
Cc: devel(a)ovirt.org
Sent: Monday, June 30, 2014 8:47:15 AM
Subject: Re: [ovirt-devel] XML benchmarks
----- Original Message -----
> From: "Nir Soffer" <nsoffer(a)redhat.com>
> To: "Francesco Romani" <fromani(a)redhat.com>
> Cc: devel(a)ovirt.org, "Martin Sivak" <msivak(a)redhat.com>
> Sent: Sunday, June 29, 2014 10:34:08 AM
> Subject: Re: [ovirt-devel] XML benchmarks
> > CPU measurement: just opened a terminal and run 'htop' on it.
> > CPU profile: clustered around the sampling interval. Usage negligible
> > most
> > of
> > time, peak on sampling as shown below
> >
> > 300 VMs
> > minidom: ~38% CPU
> > cElementTree: ~5% CPU
>
> What is 38% - (38% of one core? how may cores are on the machine?)
4 cores: 2 physical, 2 logical. I'm prepping a more precise test
using a better and less ambiguous indicator.
Here. Attached un updated script (xmlbench2.py) which uses 'psutil'
(
https://pypi.python.org/pypi/psutil) to gather the samples.
CPU sampled each 500ms (half a second). 100% is one core.
My laptop reports 4 core (dualcore with hyperthreading).
See attached some graphs for easier comsumption and their gnuplot recipe.
cpu_300t_3m.png: load using the test script with 300 threads, each thread runs ~3 minutes
cpu_500t_3m.png: load using the test script with 500 threads, each thread runs ~3 minutes
sampling is not really accurate but it is more than enough to get an idea.
--
Francesco Romani
RedHat Engineering Virtualization R & D
Phone: 8261328
IRC: fromani
------=_Part_233010_1164979986.1404119674471
Content-Type: text/x-python; name=xmlbench2.py
Content-Disposition: attachment; filename=xmlbench2.py
Content-Transfer-Encoding: base64
IyEvdXNyL2Jpbi9lbnYgcHl0aG9uCgppbXBvcnQgc3lzCmltcG9ydCB0aHJlYWRpbmcKaW1wb3J0
IHRpbWUKaW1wb3J0IHhtbC5kb20ubWluaWRvbQppbXBvcnQgeG1sLmV0cmVlLmNFbGVtZW50VHJl
ZQppbXBvcnQgeG1sLmV0cmVlLkVsZW1lbnRUcmVlCgppbXBvcnQgcHN1dGlsCgoKZGVmIGVwcmlu
dChzKToKICAgIHN5cy5zdGRlcnIud3JpdGUoJyVzXG4nICUgcykKCgpjbGFzcyBXb3JrZXIodGhy
ZWFkaW5nLlRocmVhZCk6CiAgICBkZWYgX19pbml0X18oc2VsZiwgZnVuYywgeG1sLCBkZWxheSwg
bnVtcnVucyk6CiAgICAgICAgc3VwZXIoV29ya2VyLCBzZWxmKS5fX2luaXRfXygpCiAgICAgICAg
c2VsZi5kYWVtb24gPSBUcnVlCiAgICAgICAgc2VsZi5mdW5jID0gZnVuYwogICAgICAgIHNlbGYu
eG1sID0geG1sCiAgICAgICAgc2VsZi5kZWxheSA9IGRlbGF5CiAgICAgICAgc2VsZi5udW1ydW5z
ID0gbnVtcnVucwoKICAgIGRlZiBtdXN0Z28oc2VsZik6CiAgICAgICAgaWYgc2VsZi5udW1ydW5z
IGlzIG5vdCBOb25lOgogICAgICAgICAgICBzZWxmLm51bXJ1bnMgLT0gMQogICAgICAgICAgICBp
ZiBzZWxmLm51bXJ1bnMgPD0gMDoKICAgICAgICAgICAgICAgIHJldHVybiBGYWxzZQogICAgICAg
IHJldHVybiBUcnVlCgogICAgZGVmIHJ1bihzZWxmKToKICAgICAgICB3aGlsZSBzZWxmLm11c3Rn
bygpOgogICAgICAgICAgICB0aW1lLnNsZWVwKHNlbGYuZGVsYXkpCiAgICAgICAgICAgIHNlbGYu
ZnVuYyhzZWxmLnhtbCkKCgpQQVJTRVJTID0gewogICAgJ21kJzogeG1sLmRvbS5taW5pZG9tLnBh
cnNlU3RyaW5nLAogICAgJ2V0JzogeG1sLmV0cmVlLkVsZW1lbnRUcmVlLmZyb21zdHJpbmcsCiAg
ICAnY2V0JzogeG1sLmV0cmVlLmNFbGVtZW50VHJlZS5mcm9tc3RyaW5nCn0KCgpkZWYgcnVubmVy
KHhtbCwgbW9kZSwgbnRocmVhZHMsIGRlbGF5LCBudW1ydW5zKToKICAgIHdvcmtlcnMgPSBbXQog
ICAgZm9yIGkgaW4gcmFuZ2UobnRocmVhZHMpOgogICAgICAgIHcgPSBXb3JrZXIoUEFSU0VSU1tt
b2RlXSwgeG1sLCBkZWxheSwgbnVtcnVucykKICAgICAgICB3LnN0YXJ0KCkKICAgICAgICB3b3Jr
ZXJzLmFwcGVuZCh3KQoKICAgIHAgPSBwc3V0aWwuUHJvY2VzcygpCiAgICBwLmNwdV9wZXJjZW50
KCkgICMgc2VlIHBzdXRpbCBkb2NzLiBEaXNjYXJkIHRoZSBmaXJzdCBvbmUKICAgIHNhbXBsZXMg
PSBbXQoKICAgIHRzID0gMC4wCiAgICB3aGlsZSBhbnkody5pc19hbGl2ZSgpIGZvciB3IGluIHdv
cmtlcnMpOgogICAgICAgIHRpbWUuc2xlZXAoMC41KQogICAgICAgIHRzICs9IDAuNQogICAgICAg
IHNhbXBsZXMuYXBwZW5kKCh0cywgcC5jcHVfcGVyY2VudCgpKSkKCiAgICByZXR1cm4gc2FtcGxl
cwoKCmRlZiBfdXNhZ2UoKToKICAgIGVwcmludCgidXNhZ2U6IHhtbGJlbmNoIHhtbHBhdGggbW9k
ZSBudGhyZWFkcyBbZGVsYXkgW251bXJ1bnNdXSIpCiAgICBlcHJpbnQoImF2YWlsYWJsZSBtb2Rl
czogJXMiICUgJyAnLmpvaW4oUEFSU0VSUy5rZXlzKCkpKQoKZGVmIF9tYWluKGFyZ3MpOgogICAg
aWYgbGVuKGFyZ3MpIDwgMzoKICAgICAgICBfdXNhZ2UoKQogICAgICAgIHN5cy5leGl0KDEpCiAg
ICBlbHNlOgogICAgICAgIHhtbHBhdGggPSBhcmdzWzBdCiAgICAgICAgbW9kZSA9IGFyZ3NbMV0K
ICAgICAgICBudGhyZWFkcyA9IGludChhcmdzWzJdKQogICAgICAgIGRlbGF5ID0gaW50KGFyZ3Nb
M10pIGlmIGxlbihhcmdzKSA+IDMgZWxzZSAxNQogICAgICAgIG51bXJ1bnMgPSBpbnQoYXJnc1s0
XSkgaWYgbGVuKGFyZ3MpID4gNCBlbHNlIE5vbmUKICAgICAgICBpZiBtb2RlIG5vdCBpbiBQQVJT
RVJTOgogICAgICAgICAgICBfdXNhZ2UoKQogICAgICAgICAgICBzeXMuZXhpdCgyKQogICAgICAg
IHdpdGggb3Blbih4bWxwYXRoLCAncnQnKSBhcyB4bWw6CiAgICAgICAgICAgIHNhbXBsZXMgPSBy
dW5uZXIoeG1sLnJlYWQoKSwgbW9kZSwgbnRocmVhZHMsIGRlbGF5LCBudW1ydW5zKQogICAgICAg
ICAgICBmb3IgKHRzLCB2YWx1ZSkgaW4gc2FtcGxlczoKICAgICAgICAgICAgICAgIHByaW50ICcl
ZiwlZicgJSAodHMsIHZhbHVlKQoKaWYgX19uYW1lX18gPT0gIl9fbWFpbl9fIjoKICAgIF9tYWlu
KHN5cy5hcmd2WzE6XSkK
------=_Part_233010_1164979986.1404119674471
Content-Type: application/x-shellscript; name=plot.sh
Content-Disposition: attachment; filename=plot.sh
Content-Transfer-Encoding: base64
c2V0IGRhdGFmaWxlIHNlcGFyYXRvciAiLCIKc2V0IHRlcm1pbmFsIHBuZyBzaXplIDkwMCw0MDAK
c2V0IHRpdGxlICJYTUwgUHJvY2Vzc2luZyBDUFUgdXNhZ2UiCnNldCB5bGFiZWwgIkNQVSBwZXJj
ZW50YWdlICgxMDAlID0gMSBjb3JlKSIKc2V0IHhsYWJlbCAiVGltZSIKI3NldCB4ZGF0YSB0aW1l
CiNzZXQgdGltZWZtdCAiJXMiCiNzZXQgZm9ybWF0IHggIiVtLyVkIgpzZXQga2V5IGxlZnQgdG9w
CnNldCBncmlkCnBsb3QgIm1kXzUudHh0IiB1c2luZyAxOjIgd2l0aCBsaW5lcyBsdyAyIGx0IDMg
dGl0bGUgJ21pbmlkb20nLCBcCiAgICAgImNldF81LnR4dCIgdXNpbmcgMToyIHdpdGggbGluZXMg
bHcgMiBsdCAxIHRpdGxlICdjRWxlbWVudFRyZWUnCg==
------=_Part_233010_1164979986.1404119674471
Content-Type: image/png; name=cpu_500t_3m.png
Content-Disposition: attachment; filename=cpu_500t_3m.png
Content-Transfer-Encoding: base64
iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAMAAADBSF6tAAABNVBMVEX///+/v78/Pz+fn58fHx9f
X1/f39++vr6g/yB8/0DNwLDB/8Ggts3w//DNt57//8D//4D/wMD/oHD/oGD/oED/gECAgACAYP+A
YMCAQICAQBSAFBSAFABVay+QUEDdoN2UANPugu7/pQCggCD19dy4hgu9t2vw5ozplnr6gHL/RQDw
gID/f1D/FJMAztH/AP8A//+HzusAAM0AAIAZGXAAAIsAAP8ui1ciiyIA/38AZAAA/wD/1wCv7u7/
tsHu3YLg///wVfCt2OaQ7pDwMjL////l5eXMzMzAwMCzs7OZmZl/f39mZmZNTU0zMzMaGhoAAABA
4ND//wClKip//9T/gP9AgACLAAAwYIDAgP8AgED/wCBBaeHIyADAQAAA7u7AAP8AgP8AwAD/AACg
oKAAAAD///9xbSVkAAAAAXRSTlMAQObYZgAAAAlwSFlzAAAOxAAADsQBlSsOGwAAH7lJREFUeJzt
nQmWrCAMRb8Tm3MVni7d/xK+gAPODNGAvndOV9tVJqHU2yag+K+DIIhV/7gbAEFfFyCEIGYBQghi
FiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCE
IGYBQghiFiCEIGYBQghiFiCEIGYBwqdV1epXXXVtNb7V9i/tYq1WKi/8QrQXn2dV2ZZVZkaZTK5s
IXoBwqclSjG8tmqpX853IJTvF6UfhRcg9W5Fl8mgcxRAyChA+LiKvH+Rp5+21qfCqtiHsD9llTfE
FwP7tRkFEDIKED6vvO5qCWI7nhS7Iwg7dbbqk8dOnrnaPJPvCZlMFuqd4UxZl8Nnw0KrTetyWKE/
1ZbVFKAqdqMs3zI+mtyLqi11Lm04nFsB+QoQPi9RZoq+VteHdX0IoTpHKWiyPoXsE0eJQln3yWTV
/y76dyV6Vf+GyPJ5QUMo/8okIELZVmOA4US4irJ8y4Rwct/7EqrFhsO5FZC3ACGDiladO1p5ElRQ
nNWErTr56NNXUU0dO/p3lndHAGk7zaZcqld4raLs+lieJKVUiw2HcysgbwFCBk0QytJQgnXWO9oK
+bc+fUkExhPZmMr2TqrhrXFBQ7iyEHsQHveOzhBO7mVa2rbdwuHcCshbgPB5zemozARlLndYE05L
2xNTq9XpWk0OOEwL7a7FYTq6WNpCOHqtVNnZLj4zWgF5CxA+r6ljpv8p67KzgfDgTDhKFHk1L6wg
XJ0Jtx0zhrfppNaaRsqrPuntnQmhMAHCxzUPUXRjZnoN4U5NuOyTnBjrF1YQrmrCzRCF8jZ4rccL
CHRPbG14VWZzITgsomc0XIDwaRmD9dN71xDu9o4K3SWS9wtCnlvHhRWEq97R1WD92Krea288ndlk
LFFX7ey1qoR+Y9U7KtAxEyhA+LSMy9am97bV1aZaKxbjhHlhjByqq9BqY2EFoRrLq8Tscr5sbW6W
9CrXmt4olK929irXMAYHB4fz+CXkK0D4FZFffXPL5TyfFCD8gPozlfd1qM84/LYA4QekUllKZMgd
fluAEIKYBQghiFmAEIKYBQghiFmAEIKYBQghiFmAEIKYBQghiFmAEIKYBQghiFmAEIKYBQghiFmA
EIKYBQghiFmuEGbVcPN3Ntzf3anpuNpKULYKgj4kVwjLepgmQc5pkOn7Ovv3RI3brCHITx7pqIZQ
zZSiJsjTE3Rh2i0I8pM3hPOynuYHM25BkJ/CICyGZyl0mAodgnwVBKEos24xtx4EQc4KgVDoRBQQ
QlCIAiAUw2PpjtLRFoIgi6fl+EM4MnjYMXPPqTElr0k1NiWvSTX2RggnBg+HKN61oSJyC69JNfZG
CI25Xw8G69+1oSJyC69JNZYewinNHRZEd3jZ2rs2VERu4TWpxt5yJqQL/nr94PUWr0k19o0Qtod/
xkd9SsdKSl6TaiwghCBmvRHCiAJC0LUcIBSFflRrIZ4LbuunKuWTYtWDYqfH0NZlW46Pe++EfHLs
9BBZ/eTYlRkE8cgaQlG18tHkPYp5W4mnglv66f8xiLxWr8UIYSUf3F4Of6pnqOvHqc/Pdl+ZsSil
0iUlr0k11hrCdhp67w9jInrIIJQIZfo1HyFUtzOOf+rHwNdqUfFWVBszFqV0rKTkNanGWkO4SNiI
sjcyCIXxOkKo/pLXq8o/h6tXjcVyY2aocRbRN4G+qFd0zLTL19bwPfxp3Mex/GD5OgoQQg/qIxDu
nwk3xhDEoI9AuF8TboyfF1/p4n72TqnMSqqxThBmueySybPjlamDu/g5g1D1jhbr3tGN8fMChMlC
SFeDuEDYH7kyoaPrSXwOQnOcsJjHCdfGXxLq2EDxQDiePcgO2O8d+REJEAaKB8IBQAEI3yBAGCge
CIerUYro0tGE5V26nB4CqAlfWxNmcoZ7Ueg+/meCv16pQkh3BAJCt95RUZVtWQmq2GlDyJzOBYcP
c4BklgtCagFCxvCAMFCAkF+A8OPi6x0llbXDeZJU3zbYz7NqK5p9gJoQNaHbOCFVUPvgmxU9IGo3
CyQChDQChE4Qkj9g8MMQMmeT6kYRzvAvEFNNKG9Wp9R1cNUfW2wgzHI9c0W3nqHC+GCa3WJKQtvR
ojVWNJbcBAg/LqaakLquunQkSjlHRbWGUPTUZPqha8sZKswPxtktVmfCVp3P5xXnJUcBwo/rK72j
+g6kTceMeltdR76aocL4YJrdYg1hvfQwLzmK5iBmqwk9IIyqJrxqwO01IeGd3HFDOF6cszoTqrfV
k9ZatcLwuv1ALy5s9QfzivOSoT9nXX/ZpQDhnlcHfRbCTF0xQ3Y74XXwdvV7BGnKitc3Ma0+WN70
YdziZKy4l2E/B6G3vp6ORtAApmtHC9Hp+2EfCn52JjQ+mF7XHxxCOK/ofSUsakJWRdAAtrsoukfv
ophqwqXJPFaygnD9wSGE84re4y6AkFWpb0BTTr2jQv168H7C495RYXa6TK/rD9SvaQDCgHBecV5y
FDpmaMRVE3p9A/6asBXq15M39cpxwv4EvL5sLTuaoWL1gX6vXI4TLj0YS24ChDQChJGnozEL6Sir
Ut+AplwgLB7vmIlZgJBVqW9AU3EPUcQsQBgYn9eeewOaoh+sz6px1G1+Uv2jz6x/SKgJgzQ5QE3o
lo6qa6SvOvXlRDTTkqjL5ZJj8Ij1dQipzmSA0AnCoRi87s/XTmvFrER2XnIN7qOHJgVLPp0LbD9z
Opn6BjTlNERha6NXGEcAzCXX4D4ChHb2gDDQnudMKNSv9dXOR07nxx/NS67BIxYgDIzPbc/tYJbT
nfX6IjKdXF47ncfLW/Ntp+ARCzVhkLhrQr8vwF8TqovIRH19yTMgtLYGhIDQbYjCdvJf63RU6ie/
WPwvv/V7TRPiT+7BoAaFOmjCHDRhX186CNsfffMDtx+3A/1iN1WFx0296Ji5FGpCdntuB7NuhJBr
iOIhJX8Qp97+UHtuB7NuhBCD9afW2tz7tI2a8PzzK7fJ1oR2Hqf5InDZ2pk1L4QNIHwzhKTBfZRI
TcibjvlAuLIPio901BAg9PWa9kH8AgiDNwBvAwy9EMKHlPZBDAi5G2AIEPoKNWGQwmvC8wa8vSZ8
cI6ZiMUL4fkhAAgBIV1wH32iJiSwRzrK62AWIPT1CghDG5C6/fMQtoaeCx6xAGFoA1K3Z4BQONiQ
BY9YqAmDNDlItCZkgXCckd7Khix4vCI6kwBCQGgPYTZf+hk5hM/UhMzpHHc2hXQU44Rn+gqEofGT
hpD7+wPCGAQIQ8wBoSlA6Cn+mvAk/vtrwsv2X7j1ZIi5JrxDgBAQAsJXQoia8Bn7EHOko6YAoafX
F0AY4gAQAkJ+MR/E4Qdh2NUGgBAQ8osIQr6a0B1C1IRR1IQtLTi8ELL+KwWEgHDSCyG03atuG3Gn
JkQ6yufgw+koIDSsAWFYAwDhqBdCaKso0lGm8ICQeweYAoTe1iH2kzVTTdigJkRNaBv8Tn0bQo/v
Twlh8wYIqSh8IYQp1ITc2ZAXhKv4Adb86STBDgj8L24IEHp6BYQB1vwQAUL74HcqinSUyQEgBITW
we9UFBCiJuSrCT2+gVkTckFILECYKoTB3RL8EHrtf0BoKdSENuZh/4SCD0HudJLgCwDCEwFCG3NA
CAgtg9+pKNJRJgeAEBBaB79TUUCYbE1ItvlQEwJCf2tAGCBAaOhOCIu8bfNCLj36zHrUhDbmSEc/
kY5WedZ1WV71i2UtRF1u1gCEXA4A4UcgbIV8FX2EWoLYVYV78DsVRTrK5AAQJgyhqMqyEnauS7We
6E+A8pQoT4ruwe9UFBCiJkRN6AphLvPKDUz7qnU6Wps4uga/U4DQMSYg5Iawnle3ZaeSDxStZoON
3bdrQs50DOlokuloXsqc0ulMWBZCFGUNCHdjA0Je+xQh7ApZDIp8d6xhV6WuBMuTdFTqJw9vjhe5
Df0dDEeBpwO1C0Nar8KHtP73C3EwHoIBDoK2n7IP237BOyDQwfBi9/z5uSbsT22Xaxuaz3/omNmJ
rc1/t4S/9BpBTTg68NsC36wJpUSucbLTfCbEEMVObEAICAc59o6qEs9SRZnJmlCih8H6beyv14Rh
Dr5ZEw4jhP0v65wUl62dxQaEoRAGboAEIZz6RbPSsneUIvidiiId5Qn/Bgh57XkgNEYI7TPS4OB3
KgoIURP61oQXDXhlTegyQkgX/EaxDlQBwsQhbJhqQvsRQrrgPrLcq44QoSZc2X87HQ3dgAu98KZe
QGgVHxACQrvgNyqOdJQnPCBMFcIiL9u2zJ2umgkNfqPigBA1Yao1IQeEoqwy0f/KKn0l6DPBbxQg
BITOYoawmgYm9EVozwT3EWpCq/hIR9NLR1sxviHI2AGEAQ4AISB8JviNiiMd5QkPCNOEMJ101FJx
QIiaEDUhOmYCzAGhvwChIYchiloPUZBdOYqaMEBIR9ntWSCkFyAMcAAIAeEzwa8UsB3iSEd5wgPC
VCGM8YqZ5CFETYiaMPWOGUC4K0B44db3TiRcMbOjve2AmtAq/qfT0WCGeCBsxfhGTIP1gNA7PiAE
hHbBr5R8OsoTHhCmCWE66ai1aQwQoiZkqgn9jh10zOwIEO4KEL4TwjivmEFN6B0f6Wh66egdAoQB
DgAhIHwm+JXC0tGwvQAIwxoACEf5QPia3tEIIERNiJoQEPKYA0JAOOuFENrXhC4bETXhyh7p6PMQ
toaIYgPCAHtA+EUIhYMNWfArJZ+O8tknDaHvBdhG+BQhnK+YAYTh5qE14cUx+Pqa8Lr9r6wJs/lB
u4Aw2BwQAsJZLxwn/EZN+PV0NLj9KaajdwgQMtoDwm9AWJRtee8z65NPR3nsG0D4FQirSnSZerhv
KR/zW25WAIRMNaGyRU3oHpd7egvzPas7CrPp4dr6DsRqM0UUIASEgNBlnLDMxney0oqeajLI1VK2
eeI9akImez8I6eIjHV3I5Zn1eSH630XeVsLGddmv2Sr+9G3AYpOPAkIme0CYJoQKP3lXbyVRtHJd
FkIU8gTaHsRKOB0NvG4MEALCWTd2zLSqBizyl0JIcxCjJkRNeCeEQxLanqSjUj/5xXxf5HbwtFUQ
egcfDyLv4DL+T/7l5aC3DWz9L9RByNc3Hfw8t1+ntt/hKucbVtr2P/6HXrCD8cXujghvCHMhXyWE
L+yY4U+nkI4iHb1WMaWjzw5RAEKr8IDwCxB2+dgxc9tgfUhZx10TAsLg7Rey878CoajKVmeid122
lj6Elqdtx/BXXl/RMXPegnO3n+mYoQh+IUC4r2cgpBljAYRvhPAzNWFYNsZeU3Hm0wmno1leTn2d
zwS/0JchDD0GmdsPCGe5QFiUmRxw2A413Bf8Qumnozz2EUAYbv9NCMcr0OKZ3iJ9CP1rwrP4T9SE
VBCiJnSCcAAwoucTAsJ9AcLXQpgXav0i8nQUNaGVecrt/3A6mpW1aEUR0fMJAaG/ecrt/zCEavS9
rARRaKSjbPaAMF0IqQUIv10TNiuvbvbfrAnJRQGh94YAhMwQdoBwkFPv6Khycz/EXcEvtAsSakIr
c/b2c36BhNPRqhadqCuREVEICJnsAWGyEA43BBYV1SgFZzrKO0kMIAxrwHchHMYmREk1Xs8LYehR
hJrQ0X6/AUnWhMFTmC/kVBMK9UsSCAgB4bchvIrvItcrZjp1xQzRNdycNaErRXs1IV86hHQ03J6z
/Uu5XjHTibrPSvP0O2bCIeQ+CADhFyGM8ooZvnSU+yAAhJ+EkFqAEDUhakJA6B8ZEAJCdwe7eiGE
qAmtzJGOppmO1mVrN2s3WfALAUJ/c0CYJIR1JVp52RpRaKSjrOEBYZIQlkKtXpBRCAhRE3LWhO5f
gL8mHK+U2c5nf1vwC6UKYQMIO3YIfb4AP4RVoSZc2z7i7L7gF0q1JuROB7njR5GOsm7AhVwg7Omr
cyGqyNNRQBh9fHYIuO2Xch2iqErCS2Y+nI52MUCYbsdG6vZLvXCc0NY0CggZa0Ln9qMmjKAmJBcg
BISA0H0GbjsbsuAXQk0YED/UAdJRQCgFCAPiA8KEISwiH6KwNY0iHWUJDwi57Zeyh3Ce8DAjig0I
UROiJuz80lEHiVIZ3fjMekC4I0D4Wgg9lBf6QrdaiHqbxaImDHGAdDRd+6XuhbCuVAB940W1mZgG
EIY4AITp2i/lBGGRl073E2alDpCrKnI7RRvSUZ7wgJDbfinXZ9Y7OR+fr61nDd5e+A0IUROiJnR/
Zr2LqrpbPOR+EwsQAkJAeGvvqE4/n4cQNaFdfKSjKaajjs/J1qufpqNSP3l4e74oCP1sm+bnZPtb
/ilt5U7wDj68BDjof3wd6G8e6MD/6w+2AQ6MVIJlB6hNF7D95he7ThZjjpn6cmVT0+g+Omb2rHEm
TPhMxtg7Kp9P6BPg2SEKW9MoIPzdEv7KK2rCdGvC6dTmGuDRwXpbU0AICF3FD6F/gEcvW7Pbq+iY
STgdbbjTycQgDAt+IUAYED9pCOdXjviA0FD66aivPSCMAUIiCp0gzHJ5U4Tu63wm+IXSh9CvJrw6
ht5eE47tP2nBAzUh2anQ9bK1dm+o4b7gF2KDMPBUBAgpIDxtwVshHC8FxfQWJOlUQDZDkk0ln46y
1gNh8ZdyvWyt/xGAkLumYT+GAGFY/KVcIJRPqm/lDU00odNOR7svQxjaMQQIF3KBMCtr0YrC8RLS
oOAXSh/CNGvC0GMYNeFCTr2joipbwlnwAeFXIWwAoakXjhOiJvxG/JS/wFJOQxT6cUzbC7HvC34h
QPjh+Cl/gaU87qyPZ5ywST8dZQn/jvgBDmiuPWWBMLpp8ENAigTCr9aE8ytHTejNEH9NOHSLxvOk
XkB4IED4WggrfWd9Hc2TevdBQk34jfhB6WhYfEYIRVmLTtTxjBMCwi/H/yaE0Y0TviAdZQn/jvgf
hZBagBA1IWpCQOhvHQGEh/EB4WshJBuaoHIYUBM26deE3PZIRzkgJBuasA9+riAIHbchIFzbA0IO
COmuV7MOfq6AlNIZwq05NwTc9oCQpSb0mfw3LPi5XgBhQE14Eh814YM14d+fs5uVbp/8Nyz4uQDh
gQDhayEkF2rClO2RjgLCDhACQqb4gHDWC9LRhO0/DGHDCGFsk/+yQ+i7/ad96Ongyj6hmtBrC5gQ
+myC0Jpw8U/gWQijm/wXEALCr0EY3eS/7DVhrBBa23sqAQht43uJEcLoJv8FhIDwaxBGN/kv0lFA
+DUIo5v8FxCiJvxaTfimm3oBISBME0JqoSZEOop09FYIs/68mesbL256Zj0zhB0gDLEHhKNuTEfb
POvLSEVhX0yKens7Ins6GrgXUoWwAYSGl8D4D0PoONtarW26cZLE7e2IzBD674UmcggvkgHjGHJp
AGrCCGrCIbd0G6KQAfpTYrd3pU3CEOpfgNBPgHAhp8F6oX45DdYX8kyoz53bmbuZa0KnvbDwGjuE
VubOEK4cxA2hVfzQf8I6/rOXrQn1y2UafKEeItMexAKE34SwiQPC8EzI+wss5THHTGE/Db7Qieiz
ENqa8qWjzechnH8BQo85ZoTDoyjE8DC1w3RU6ifPMX4vTfPrt4OXbW86vPgEV1v/9+sh9A8+QBTg
oH/tjwAPB7L5g5cAB4MXv/02eZHH8B0OfnY7wO8rDEedaka/C70P4P7Fbr6YnTlmLKeZGRl8bcfM
n2c9MP0jDXNwbP+zjB/YMUNwIvHbAhYOTjeB95nwt7V/+kzoponBh4coLo7AyTS8JowWQtv4Qeko
STZ3G4S29l5KB8J8hu7RwXpAaB0fEPopHQiHxFV0D1+2Zmv64nTUNj43hA0glEr/Am6/DfluCB+p
CYM3X3cnhKgJyYKfS24EQLgjWwjdxjgAISDcah9C1ISW8TtHCLfxfWzX8ZGOAkJbvRPCIAfex2Bc
EAbaPwnhOEAY2Z31SEf94wPC1CAcZX8rE0XwU6mrxgDhjuxqQtcG7NaEsUJoXxN6lMXcEI5D7xQC
hIAQEHpB6HIXRWjwUx1AiJrQMj7S0VTTUSsbsuCnCobQr3++A4SAcP4FCMPSUe/tBwinV0CIdBQQ
7n2OmvDtNeF7OmYAISBMEsL4hyjeXxM2VxDaxU82HW0sILRpQHLpaISD9R+GkMSeAsIQBgIgHH+H
ORgOAncH3GdCSgVCqDZfwuloBwjD7EMdpAdhUbZ6Om06AcKbIHyuJowWQuua0GcTmAfdkxAW5TSp
PZkAYeCZDBB+C0I1WQXd80Etg5/qAELrmtDzCOzih9DW/qPpaOMN4dJe6dGOGdFRPinbMvipAiBs
AGH3ZQiN314QGn88CqHl6rTBTxWQjnqX5IY5IASEHSAEhKgJfTaBP4S/ZfyuA4SAEBB+C0LH6bdp
gp8qqCbsUBMiHU0tHb1DgBAQAsJXQmijsHS0+TiEDSCcBQi5IDQaEGCfak1oDLP5MRBNTeg3ULUc
JnwQwqyt9ULdZsFRrYOfqeGG8O8v6EQS4uDCPnYIpwW/LWDjwAZC92+wB6G18aGsIaymi2XySO4n
PILw/ppwgrDxekzo1GRpHAZh6K1EQf8ESCD0+QahDvwhXNl3D0M4PeesyyK5sx4QAsKPQWisGMkQ
RQTpaOIQ+ubDgHBefvZMKMY3Yplj5hUQ/m6B0LImdKT4lprQZwvYQPjOmrAY3ygirwmtbAHhqYNd
AUJuCLPxVDg/BfuB4GfSuRRqwucbMEPolc9GlY76fAM2CLuiLESPYEF4Y28ohJqD9fu2ELptfkC4
sW8aPwfcEDZLCJ0dUN9O6DJYL6qSdp6nmyC0kYbQjyFAmDyExpIXhMYfD0MYov2H1gPC1GtCAgif
rwkDIPwt7bukICxrIepNr+pB8J3vtYeaCeFkcsakXGnRp2DB0GoF/ec+hItD+6wdxxCadB3YrFfb
7Zuaj8DdL7iBsNl5ZO+x18YOwtmBWmNeLRhCY2+fQXjkeNGSs2+wbXLKEOpJu+cO1vPgdhA2Swj/
phUP/wfqw60Z/blB+DP+PIfwzwXC5ZdduFiaHEPYnMWyhXBbHR97HT85P4SbJYR/RxDKb3Dc/l3Z
QNgdvv9nC+Fekzd/pANhrjpUs/U0UfvBd7pLmp0DzYRwMpErHn0l3ZfqBuHcltb4cxfCxry3Yq/B
xreZvHet2YLRarsFlv5mCJtuN9a0CXa7npo1hM3OpTMnXq0hnP+l/JktWULYOEP4Z/zLPWxAu//d
F+bXEE5xhja3i/brldwav6dnINTDG5tR/hAImzWEf+OKVxA23a0Q/tFA+Le0oIVw/niAcNtRHAph
s4Twb3nojwsDhG4UhkG4asnxN/gz47wAwnY/2G7wnZGDptkeEiaE+j/twYpLv03nAqHRltb4cw/C
KbT+r39G4RGEo4vp65gWpj8DwkZ/pVWsccPujsJs8kR1IlwlpHtb0hHCMdBIoFkyjAvDN3CC0PhS
ZxAejUCZX/UCwrHJ88Z4I4R/uxpvULnU/E/WymSzkoXVahXj3/qxA+v2H65q7eFyxasVps8dGu3W
gnGd0K96ZHPs4OiT1fvuDpYiw+NEd6ajEARZTNp0Y8cMBEE2unGIAoIgG904WA9BkI1uvGwNgiAb
3TjbGgRBNgKEEMQsQAhBzAKEEMQsQAhBzAKEEMQsQAhBzLoNQuKxw6wq27y4w7MoW3qvRdnqKbMo
3RZ5O2wDIq9ZNV7YODsMdz15pd1nc2M7wp1meCXcZ7NXq312G4TEV9G0edZlehsRe86LltxrVYnh
WlpCt5W8RjdTzwoh8tq7aaelwWG468kr7T6bG9sR7rTZa1XR7bPJq90+uwtC6utJ1UOj1I0axJ57
dy211/ladkq3rZCvcu8SetXHyuyQxvXgVb5Q7rMJQtKdNpy2iffZ8H9IyNerfXYXhPfcWdGSe5bP
vyH3WmXjEqXb+Y4xQq/6WJkd0rhuV8tEDR7d0u604ZxFvM+0V7t9dheEB/cYhqkoyT3LCcdbaq+l
qgQyYre1Tm1qUq/rY4XGtQEh5T4b3dLutGETEO+zIRmw2md3QXhwt32Q9BT9pJ6renBF6rUv8IUo
xkOFzG0l7xCtOlKvremppXJt9qAQ7rOxeqPdacMmIN5nY1tt9llCEAp9Rqf0rLMDeghV5l/ktG5r
fZjUKUFIu8/M6o0cQuJ9NpwJrfZZOuno+KgaSs/aF306qp21xI3VVQVZzqh0bzpKvM/MxpKno9oX
2T4bvFrts2Q6ZqbHRVF6nqcBIW1vLuSr3KGkjZ1+pdIxQ73PhnMW8U4bNoGQr3T7bJ1icHTMUA9R
zI9so59Mg3yIophSG0q383/VRIYoyPfZutOVsrHU+2x9JuQYoqAfUr/L87C9SL3mY5FP6bZ3KIZn
19F5HY5rysH6ySv5PltDSNlY6n02oG21z1K5bG3IQAS952F7kXqVz5nT+UfUl63NU/JRXrY2eaXd
Z6v5A4l2mrkJ6PbZ7JX3sjUIguwECCGIWYAQgpgFCCGIWYAQgpgFCCGIWYAQgpgFCCGIWYAQgpgF
CCGIWYAQgpgFCCGIWYAQgpgFCCGIWYAQgpgFCCGIWYDwLZqnXiGdZxK6X4DwTVrMLgSlIkD4JgG/
JAUI36T5TNh2VSnnnK1KNf+znGxvePAXFJ0A4ZtkQFgVQuS1epXsiZ7AbJqCEIpKgPBNMiCU5GX6
VU44q57fQP2QLIhGgPBNMiAU3fzaDbOwEz8kCyISIHyTzJpw9fdy1k4oJgHCN+kYQv08EihKAcI3
6RhCymd3QMQChG/SMYSiLAQ6ZiIVIHyTjiGU44TDoxag2AQIIYhZgBCCmAUIIYhZgBCCmAUIIYhZ
gBCCmAUIIYhZgBCCmAUIIYhZ/wFkKzV9E/wxVAAAAABJRU5ErkJggg==
------=_Part_233010_1164979986.1404119674471
Content-Type: image/png; name=cpu_300t_3m.png
Content-Disposition: attachment; filename=cpu_300t_3m.png
Content-Transfer-Encoding: base64
iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAMAAADBSF6tAAABNVBMVEX///+/v78/Pz+fn58fHx9f
X1/f39++vr6g/yB8/0DNwLDB/8Ggts3w//DNt57//8D//4D/wMD/oHD/oGD/oED/gECAgACAYP+A
YMCAQICAQBSAFBSAFABVay+QUEDdoN2UANPugu7/pQCggCD19dy4hgu9t2vw5ozplnr6gHL/RQDw
gID/f1D/FJMAztH/AP8A//+HzusAAM0AAIAZGXAAAIsAAP8ui1ciiyIA/38AZAAA/wD/1wCv7u7/
tsHu3YLg///wVfCt2OaQ7pDwMjL////l5eXMzMzAwMCzs7OZmZl/f39mZmZNTU0zMzMaGhoAAABA
4ND//wClKip//9T/gP9AgACLAAAwYIDAgP8AgED/wCBBaeHIyADAQAAA7u7AAP8AgP8AwAD/AACg
oKAAAAD///9xbSVkAAAAAXRSTlMAQObYZgAAAAlwSFlzAAAOxAAADsQBlSsOGwAAHmZJREFUeJzt
nQm2qyoQRb8dk3MUWffh/IfwBexiF5qCAj1nrZfrS6SKiDtUgeJ/AwRBrPqPuwIQ9HYBQghiFiCE
IGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYBQghiFiCEIGYB
QghiFiCEIGYBQghiFiCEIGYBQghiFiBMra7Xf/pukN38lhxf5NdeUqlu/FzIH59XXSvbrtp6WYr8
KgvRCxCmlmjF9Cr11rhdn0Co3m9aPwp/gDSaFUOlnK5eACGjAGFyNfX4orof2ZuusGvOIRy7rDaC
fzGx32+9AEJGAcL0qvuhVyDKuVMcriAcdG81Bo+D6rlkXan3hAomG/3O1FP27fTZtCFN0b6ddhi7
2rZbHHTNqZfvtzYfLeZFJ1sTS28MrrWAfAUI00u0laZPmvyw7y8h1H2UhqYaQ8gxcFQotP0YTHbj
32Z8V6HXjW+Iql43DITqf5UCROiy3exg6gh3Xr7f2kK4mB9tCV3jjcG1FpC3ACGDGqn7Dqk6QQ3F
XU4odedjuq+mWwZ2zN+qHq4AMuUMm2qr3+G183Jq47uTVNI13hhcawF5CxAyaIFQpYYKrLvRUSnU
/033pRCYO7I5lB2NdNNb84aBcFdCnEF4PTq6QriYV2GplMOXwbUWkLcAYXqt4aiKBFUsd5kTLlvH
jkkaDSZXUxMOy4Y8LXEZjn5tHSGcrXY67ZRfn21qAXkLEKbXMjAz/mv7drCB8KInnCWauls3dhDu
esLjwMzG2tKpyW0hbdV0emc9IRQmQJhc6xTFMEemvyE8yQm/xyQXxsaNHYS7nPAwRaGtTVb7+QIC
MxLbb6zqYmsiOG1iZDRcgDC1NpP1y3u/ITwdHRVmSKQeN4TqW+eNHYS70dHdZP1cq9HqWHjp2ZQv
0Xdytdp1wryxGx0VGJgJFCBMrc1la8t7x+zqkK01X/OEdbOZOdRXofWbjR2Eei6vE6vJ9bK1tVrK
qtpreaPRtuRqVe2xmRycDK7zl5CvAOFbRH71TZTLeV4pQPgCjT2V93WoaQy+W4DwBdKhLCUy5Abf
LUAIQcwChBDELEAIQcwChBDELEAIQcwChBDELEAIQcwChBDELEAIQcwChBDELEAIQcwChBDELEAI
QcwChBDELFcIq266+bua7u8e9HJcshOUtYKgF8kVwraflklQaxpU5r7O8T3R4zZrCPKTRzhqINQr
pegF8swCXVh2C4L85A3hum2W+cGKWxDkpzAIm+lZCgOWQocgXwVBKNpq+FpbD4IgZ4VAKEwgCggh
KEQBEIrpsXRX4aiEIMjiaTn+EM4MXg7MxOkaS7JaVGVLslpUZSNCuDB4OUXxrAOVkVlYLaqyESHc
rP16MVn/rAOVkVlYLaqy9BAuYe60IYbLy9aedaAyMgurRVU2Sk9I5/zx+gerUawWVdknQigv/5sf
9SWdKyVZLaqygBCCmPVECDNyCEG/5QChaMyjWhuRzrmtna5VT4rVD4pdHkPbt7KdH/c+CPXk2OUh
subJsbtiEMQjawhFJ9WjyUcUa9mJVM4t7Yw/DKLu9WszQ9ipB7e303/1M9TN49TXZ7vvirGopNSl
JKtFVdYaQrlMvY+nMRE9ZBAqhCrzWs8Q6tsZ5/+ax8D3elPz1nSHYiwq6VwpyWpRlbWG8CtgI4re
yCAUm9cZQv0/db2q+u909epmsz0U2+jjLKJvAr1RjxiYkd+vcmN7+u/mPo7vD75fZwFCKKFeAuF5
T3goDEEMegmE5znhoXB6lZS6lGS1qMo6QVjVakimrq53pnbuYucOQj062uxHRw+F06ukc6Ukq0VV
1gXC8cxVAR3dSGI6CLfzhM06T7gvDEEMcoFw7j3ITlic+RDkBuEEoACEEEQoFwinq1Ga7MLRglVS
6lKS1aIq6wJhpVa4F40Z40/j/PEq6VwpyWpRlXUaHRVdK9tOJHQOQc/XI+YJIahkAUIIYpbr6Ghi
5/OO6+pRvq6s11lNq5JSl5KsFlVZp3nC9M4PO3pAJA8bGamkc6Ukq0VV1gVC8gcMAkIIcswJ1c3q
aZ3r8djmAGFVm5Urhv0KFZsPltUtliBUziXkZsfNFgSxyCknpM6rfhoSrVqjottDKEZqKvPQte8V
KrYfzKtb7HpCqfvzdcd1C4J4lPfoqLkD6TAwo9/W15HvVqjYfLCsbrGHsP+2sG6xqKTUpSSrRVU2
bwjni3N2PaF+Wz9pTeodptfjB2bzq6z5YN1x3droz1m/v+y5SjpXSrJaVGXd7ifUV8zQhW4/ncvd
3xmkJSre38S0++D7po/NLU6bHc8i7HQQQpDjtaONGMz9sImc3/WEmw+W1/0HlxCuO9JdCQtBfnK9
i2JIehfFkhN+F1nnSnYQ7j+4hHDdkXzeBYIc5TQ6KvSfhPcTXo+Oiu2gy/K6/0D/WSYgNhCuO65b
LCopdSnJalGVzRtCPU84dsD7y9aqqxUqdh+Y99rvecJvC5stDpV0rpRktajK5h2O5i2sNgqRyAXC
JvnATN4ChBCJ8p6iyFuAECIR/WR91c2zbuuT6pM+sz6ZKCAsKXUpyWpRlXUKR/U10r8G9dVCNMuW
6NvvLUfnWQsQ5mu1qMo63U9oAtHf4/nGaK+ZVciuW67OfZTs8CMchUjkNEVhW8bsMM8AbLdcnfvI
FkI3hgAhFEtOPaHQf/ZXO18ZXR9/tG65Oo+pYIYAIbce0gJOd9abi8hMcPnb6DpfLrdvOzmPqSwg
LCl1yc/qTQvkV9lruUCoLyIT/e9LngGhtUo6V/Kz+kIIrRf/tQ5Hlf6pL8bxolrQvsS/UAN4oX8Z
WyCHaoS82C1V4XFTLwZmoCR6SAtEhJBrisJWWYSjUIge0gIRIcx9sj4LCG27bVg90xtzQjuLy3oR
mV+2BgiLtwoIUzj3EXLC1+ghLQAI/a0+5BQoWA9pgQdCaKsswlEoRA9pAUDIaGAoK3XJz+qLc8KE
a8zEFCAs3iogTOHcR8gJXyPmFqByDwj9rQJCbr0NQrkRjWuEo1CgXgehcChD5jymsoCwpNQlP6vM
OWFyCOcV6a3KkDmPKUDIbVUfQEBoD2G1XvqZOYTICROJ/1fsbeFoDAHCosXPECBM4TymSj8F2MV/
AAFhCucxlcUpUEj2dmqV5gAiJwSEnAYGQAgIh0dCiJwwkfh/xRCOpnDuI0CYSPwMAcIUzmOq9FOA
XfwHEBCmcB5TWZwCyAmREzpCKGnBAYSAEBA+EkLkhInE/yv2ynAUEPobeJ74GQKEKZzHVOmnALv4
DyAgTOE8prI4BZATIicEhJwGBkAICIdHQoicMJH4f8UQjqZw7iNAmEj8DAHCFM5jqvRTgF38BxAQ
pnAeU6GH8IOcMNAgckIjXLYWUB4QhgkQGj0QwlQ5IQmEJYs/mnxlOEosQFi0gg8AIDR6IIS2yiIc
LVmAEBCGKgsIy84JKSBETggIQ8oDwjCDgNAoJoRNLWXdqK2kz6xHTphICEfzh7Crq2Go6m7cbHsh
+vawByAsWoCQyH9ECKVQr2L00CsQh65xdx5TWYSjJQsQ8kAourbthJ3pVu8nxg5QdYmqU3R3HlEE
pxBywjCD5eeELBDWKq48wHSu3oSj/RZHV+cRBQhDrQLC1BD26+627HTqgaLdWuBQjjUndDyCMXLC
wuNZhKOpIaxbFVM69YRtI0TT9oDwugqBBngFCJOHo41KBkV9OtdwqtZkgu1NOKr0T53eDC/6CLIa
+BdsgPdlPADsBliPgYEwzIrd8+fXnHDs2n7uvdHa/2Fg5srC23PCT1hd35YTKona4GSntSfMcooC
EIZaBYQ8o6M6xbNU01YqJ1To5ThZj5wwVPw/Y2/LCacZwvGPdUya92VrFBCWfQ6FChAmHx2dx0Wr
1nJ0lMJ5RFGcQmWfQ6EChKkh3MwQ2kekwc4jKg8IOXNC1+ojJ+TOCV1mCOmcRxQgBITOYobwIq2L
7NxHyAkTuWcPR8NbIEwF3EVB4dxH9hC6HEJAeFIeEJLYeSCElgpuQW4I2WdIAGF6CJu6lbKtna6a
CXUeUXlAGJC6BCdExeeEdy3wzJyw7Sox/qk6cyVoGucRBQgBobOYIeyWiQlzEVoa5z56S06IcPR1
4agU8xuCjB1AyFeawAAgBISByiMcZStNYAAQIhwNFD+EH+SEyAmVMDDDagAQAkKnKYreTFGQXTn6
+pwwsDzC0deFozEECMOKB3kHhKEic/9ACC2VRzgaVDzIOyAMFQeEuGKG3gBzTuhWf+qc8FN4Tpge
QgzMxDBQMoREBxAQPnGKAjlhKv8Z/Iq9KxyVYn4jl8n6qyMACFP552YIECZxfifuFuSHkHdcJIsD
GGqA1f2sgsNR/hbkzgkDEyLkhM5fAAMzO2XAECAMESCcVPAVM8gJEY6+LByNIUDIWJwEwuIpZnU/
64EQWhfPwABjcYrRWUAY5H6WD4QYHSUzUHZOSHISIycEhLwGACEgfCSEyAlT+ecO514XjsqNSDxb
Ob8TIASEb4NQOJQhc34n/hYEhGVDyD26O8vjihlASGcAOSFnTujegMw5YbU+aBcQkhkAhIDwkfOE
yAlT+Uc4CggBYZB7QPgKCJtWtvGeWZ9BNAkIA/0DQqWYEHadGCr9cN9WPea3PewACJETIid0GR3d
vmd1R2G1PFzb3IHYHZaIAoSAEBC6zBO21fxO1VrR0y0Far1VHZ54j5yQsTjC0fLC0TGtqxsx/m1q
2Qkb0+24p9T8mduAxSEeBYSMxQFheRBq/NRdvZ1C0cp02wjRqA5UXvhCOMpYHBCWCKGzaZ0DNjUg
vDGAnBA5YUwIpyBU3oSjSv/UF/N5UcMavmWH6RCyG/jnb2BCmM2AhjDMwPT9wwycf2pzYM2PQMjx
+wQ1gHqxuyPCG8JaqFcFIQZmKGpwUjzIPcLRF4SjzRKOpp2iAIRpDADCAiAc6nlgBpP1MQwAQkD4
W6JrzRQFLlu7Ks89MOP0BXZWMTBTAoQEzm/EzRABhAMrhB9A6NyCgPBbl0eglJww9CQO/xEJ9f+A
cDSwARggrOp2GetM4/xGgBAQvhDCpq3UhMNxqiGe8xtxtyA3hM7RJLH/8iEMPYIsEM5XoOWxvAU3
Q9w54R0DljmhI0RPywk9vsAhJySh0AXCCcBMnk/IzRAgBIShI/STXCCsG71/k3k4+pKckICB14ej
zAdglguEVdsLKZpMnk8ICAHhCyHUs+9tJyj8Wjq/EXc0CQgBIQeE1AqFsOhTADkhcsJJgJCxAoAQ
ECo5jY7Oag/3Q8RyfqPLFkBOmMYAwlGWnrDrxSD6TlREFAJCQMhogP0AzHKBcLohsOmoZikQjgJC
RgPsB2CW0xUzQv8RLdV8PSB8fU4YuvLq+3JCof8oAgEhICTqigGh8xUzg75ihugabuSELw9HeeNZ
9gMwy/WKmUH0Y1RaY2AGELJX4JUQZnfFDGs4GnwN/SMgLHlkp0wIqVU4hBQQlJ0TUpzEyAkBYUB5
QAgIASFrTsgdDnL7p4IwyMALw9G+lXardpM5vxEgBIQvhLDvhFSXrVH4tXR+o2eEo+X6B4QsELZC
796QUQgIkRMiJ3ReY0bvflzPPprzGwFCQPhCCLtGL7h2fMRZPOc3Qk6IcPSF4ehIX18L0WUejgLC
NAYAIdcURdcSXjKDcBQQBpR/LYSkAoTICZETAsKQ8oAQEHKMjlqWIXN+I+SECEdfGI4Cwu/ygBAQ
ckHYZD5Fkaw8IASEiSFcFzysKBzbOb9R6RB+kBMiJzTyCUcdJFpdKMYz68uHcACEgFAp8uho3ZgL
3Xoh+mMU++qcMPQcRjj6wnDUR32nHZgbL7rDwjSAEBAGlM8AQho5QdjUrdP9hFVrHNQ6izwu0cYZ
jnIvEQMIAeEs12fWOxmfn69tVg0+XvjNC2EW5zBywqJzQhq5PrPeRV0/fD3k/uALEAJCQBh1dNSE
n+khtGtV1xZATnhSHuEoiTyeRWErs/ttOKr0T53eHi+qBXzL/tOdkPoZti7xL9TA/kXVPsTAfAqx
GVggDDBgQoFCToGzFgxpAP1iN8iyWWOm/7nzVsvsfqYDM4V3JMV/Ae6e8FNkT6ifT+jjIO0UhW3x
LM7hf1H8W1nVBgIi8tJzQp/6f1nlyQmXrs3VQdLJetvigNDxPAKEGUDo7yDpZWt2rYqBGYIKFB6O
htefRg+8qRcQJqsAICTRAyG0LZ5FOBron7kCgJBEThBWtboponacsw9xfqNnQBiUE15WADnhY3NC
ddmaPJtqiOf8RoAQEL4QwvlS0Ecsb/GEnLD8CiAcVXK9bG38JwChj4GT8uwMsFcAECq5QKieVC/V
DU1EvhGOsp9D3BUAhEouEFZtL6RoHC8hDXJ+rdD7ATOBEDkhc07o9gX4c8JBdK0kXAU/EEL2n2FA
WDyErl8gAwipFQdC5ITlVIA7HA0+ACRymqIwj2M6Xogdz/m1ACEgfCOE0531ecwTPiQc5SufRQUA
oVKxy+A/BELkhMgJfe6sz+NJvYAQEL4Rws7cWd9n8aRe5IR5hKNhBhCOKrk9LrsXg+hzmScEhPwV
CDUACJUwT8hYAUAICJUeOE+YpjxyQiIIkRMCQs4KAEJAqBT50Wihzq+FnBDh6BvDUbKpCXvn1wKE
gPCNENJdr2bt/FoPCUf5ygPCIiH0Wvw3zPm1HgLh63PCgCPwzpzQZ/HfMOfXAoRPgDDoCLwSQnIh
J3x7OBr6DdjrTyJAaClqCD+AMLwCQRQCQkvn1yo9HGU/hZ8AYVD5QiHMafHfPCAMPgWQE8Y5Ao/N
CbNa/DcHCAl+hwEhICx38V+SnNDhKJ7lhOzBEMJR7hYgUbGL/xJA6HQUAeGheOA34B6aKhPCrBb/
JQhHmc/hoXQI11d/A4BwKHrxX+5g7OU5IRWExeaEYYtPb/Xmm3pZMyJAWD6ETkVv9MB5wjQ5IRGE
3uURjnKHo0VAWI39Zm1uvIjwzPrr0U1AmMQAIOSB0C0clXU1ppGawjGZFP3xdsRACFnPYUAICL2L
7hRxtbXelBnmRRKPtyMCQuSEyAndpygG1ykK5WDsEoezK20AISAEhI6T9UL/cZqsb1RPaPrO48rd
cSBETpjEAMJRFgg9lsEX+iEy8sIXIASEgNBrjZnGfhl8YQLRtBCmKx/ahH9/gQYA4esg1GvMCIdH
UYjpYWqX4ajSP9XHuL+YFvArq15U2fGftwFdNsDAWP9/CsIgA+ogcBnQ52CwAd2EMU6Bf0la0P/8
m1/s1os5WWPGcpmZmUEMzFyUj9YT/rMqj4GZAgdmHLUwmHiKwq5Vc8gJQyAkuQcB4Wh54aib6hW6
pJP1b4EwzD8gfAWEU+AqhliXrQW2YFAwCAhJIByPgHf5yUBQ8cdDSOH8WoDwxr9dTnhjwMIqFYRh
OeElhMgJyZxfCxDe+AeEgJDO+bXCc0I3BCLkhH8IRxGOKr0Vwg8gDGQAEKaHcJ4gzOjO+mAGmDsS
QAgItZx7QvtbmSicXwsQ3vi3zQndGEBOmE9O6HDdWrDzawUOrGQCoX9HAAhfDaHLXRShzq91DaFl
TugIYZycMBKEtgYQjpYZjlqVIXN+LUAY5h8QUkAY4H6jB0JoWfzJ4aitAUBYKoS5h6PWxYPPgGwh
LCUnVEcgKCdUBs4/TJMTskH4kIEZQOh6yc6zIPR6lkYmEGYzRXE5wG+ZEzoikGlOGBwNhlWA4Ah4
lw80QBROexffqNzJekCYQQUCKQaEWqVetva5htC+fPHhKHsFHgBh0AFIDWHTyvZwb3xs55cKhejZ
EFrmhEHBABWEfDnh9o+lmHPCpl0WtScTIASEgNABQr1YBd3zQS2dX+oGovfkhOEzpa8PRwOa0Lj3
Lb2V/cCMGCiflG3p/FIPgPCvfAhDL0EvH0Lfwl+yh9Byd1rnl3pAODq24AMgDDIQ2oaAMIXzS5UO
4ScqhKlywowhTJITAsLCIRwAISA0cp6st11+m8b5pXLICYMTIoSj/OGoP0cMEMZQwRB+MoCQ5BQG
hEHufQt/qVgIw8YWCcJZgvF5QAgIlQqGMPBuuCdDiJzQOid044g5J6xkbzZ6WZF4tnJ+qTwgDDwD
ASE7hI49KTOE3XKxTJ3D/YQ3ECbKCQnOwNLD0eDLDfjD0TADqSFcnnM2VDncWQ8Is4Awh2/gX3oo
DcLNjllMUZgTwLcFPwTh6DNO4fK/gX/poTQI1/vps1hjJhjCTE7hsLE55pwwZwjtc0KXJuDOCZe7
mJqMckJ/CHU+E7RUFwGEoQPkOUAY8A2C2+DGwCMhrOaucH0KdgLnl7qB0O4MdEUgSk4YC0I7A2EM
EHyDsPKDWevL14A+d0KOAMc8YdM2YkSwIbyxNxjC03MwJYScpzABhARz1aVD6F3e/Ip5lv2Ww2S9
6FradZ5CIQxISAhOABOM+Zf/A4TlQ+hZdKdEV8ycP7T+5RAOoaewf0I0hAcDmUNolxO6QvidExYG
YdsL0R9GVeVy8dCJpm94scPfCuGhKXdFzix8nQA+R3OF8Lrs3bCRBYRfxQ873p7Cl2fgZv8/+654
qslqVZWyhvDqMFhWwGT+V43oC+Fy/D9nv+Qn3oybkiE0i3avA6yr818QXi1JNx/Czwzhejz+7cqc
mXCH8JAT/qWE8Njl+fUj6/5/9hAeD6CB0NJALAg/IeHoFsKjgVMIz1uAQmkgrPWAarVfJkqqA3nb
RJc7rBD+/e3isl2RUwvbU9gEdr++wu5AzQZuRmeuv9tgA+FX8aOXWwivWnVjxg3Cz5dVnYwu3+CH
hesWtKrA5OvEyMfcTOZ4COayf3/T0N5JV3jibTpy8muvsiA00xuHWf7fEJ4effPxsINwOSC7MhcN
SALh7Sg/IYQnXgIh/LNkYNgcwB2EU1kuCM0dnUMghIMDhH9lQyjPncnznzil6SQZPzzfYYFwJnA5
IB9dZtlx99/l3eUEsJwvu4PwtOz1d1vL38aym+J/x1lxHwg3lZ3jMCsIpzaYrRozK4S3Jq4Og+Wv
wOTrxMiUiXhBuJw2E4T7QYSDt/kMex6Ef/LvRuuBOtewttDvnc8NWPu6MuDrei4//N5p0qkXh/JH
M18BtacZ04yeWrJ5O1/XRvw0dYa2zXe+HwEbRy5OFC8c/ZMQBFks2hRxYAaCIBtFnKKAIMhGESfr
IQiyUcTL1iAIslHE1dYgCLIRIIQgZgFCCGIWIIQgZgFCCGIWIIQgZgFCCGJWNAiJ5w6rrpV1E8Oy
aCW91aaVZsksSrNNLadjQGS16uYLG1eD4aYXq7RttlZ2IGy0jVXCNlutWrVZNAiJr6KRdTVU5hgR
W64bSW6168R0LS2h2U5do1vpZ4UQWR3NyGVrMhhuerFK22ZrZQfCRlutdh1dmy1W7dosFoTU15Pq
h0bpGzWILY/mJLXV9Vp2SrNSqFfVuoRWzbmyGqQxPVlVL5RttkBI2mhTt03cZtPvkFCvv9osFoRx
7qyQ5JbV82/IrXbLAsqUZtc7xgitmnNlNUhjWu62iSo8m6VttKnPIm4zY9WuzWJBeLHkRZialtyy
WnBcUlttdSZQEZvtTWjTk1rdnys0pjcQUrbZbJa20aZDQNxmUzBg1WaxILxY8iJIZol+UstdP5ki
tTom+EI086lCZrZTd4h2A6lVubUkqUxvR1AI22zO3mgbbToExG0219WmzQqCUJgendKyiQ7oIdSR
f1PTmu3NadKXBCFtm22zN3IIidts6gmt2qyccHR+VA2lZWOLPhw1xiRxZU1WQRYzasUNR4nbbFtZ
8nDU2CJrs8mqVZsVMzCzPC6K0vK6DAhpfWuhXlWDklZ2+VPKwAx1m019FnGjTYdAqFe6NtuHGBwD
M9RTFOsj2+gX0yCfomiW0IbS7PqrWsgUBXmb7QddKStL3Wb7npBjioJ+Sj2W5el4kVqt5ySf0uxo
UEzPrqOzOp3XlJP1i1XyNttDSFlZ6jab0LZqs1IuW5siEEFveTpepFbVc+ZM/JH1ZWvrknyUl60t
VmnbbLd+IFGjbQ8BXZutVnkvW4MgyE6AEIKYBQghiFmAEIKYBQghiFmAEIKYBQghiFmAEIKYBQgh
iFmAEIKYBQghiFmAEIKYBQghiFmAEIKYBQghiFmAEIKYBQifonXpFdJ1JqH4AoRP0tfqQlApAoRP
EvArUoDwSVp7Qjl0rVpztmv1+s9qsb3pwV9QdgKET9IGwq4Rou71q2JPjARWyxKEUFYChE/SBkJF
XmVe1YKz+vkN1A/JgmgECJ+kDYRiWF+HaRV24odkQUQChE/SNifc/f971U4oJwHCJ+kaQvM8EihL
AcIn6RpCymd3QMQChE/SNYSibQQGZjIVIHySriFU84TToxag3AQIIYhZgBCCmAUIIYhZgBCCmAUI
IYhZgBCCmAUIIYhZgBCCmAUIIYhZ/wNUX2exSlMTzQAAAABJRU5ErkJggg==
------=_Part_233010_1164979986.1404119674471--